L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:155057
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
References:
1 . Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161 [PubMed]
2 . Papoutsi A, Sidiropoulou K, Poirazi P (2014) Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS Comput Biol 10:e1003764 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Connectionist Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I CAN; I Potassium; I R; I_AHP;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Working memory;
Implementer(s): Papoutsi, Athanasia [athpapoutsi at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I A; I CAN; I Potassium; I R; I_AHP;
/
L5microcircuit
mechanism
ampa.mod
ampain.mod
cadyn.mod
cal.mod
can.mod
car.mod
cat.mod
gabaa.mod *
gabaain.mod
gabab.mod
h.mod
ican.mod
iks.mod
kadist.mod
kca.mod
kct.mod
kdr.mod *
naf.mod
nap.mod
netstim.mod *
NMDA.mod
NMDA_syn.mod
sinclamp.mod *
vecstim.mod *
                            
TITLE t-type calcium channel with high threshold for activation
: used in somatic and dendritic regions 
:
: 
: Updated to use CVode --Carl Gold 08/10/03


NEURON {
	SUFFIX cat
	USEION ca READ cai, eca    
        : The T-current does not activate calcium-dependent K-currents
        RANGE gcatbar, iCa
        RANGE gcatbar, ica
	GLOBAL hinf, minf
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) =	(millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}

PARAMETER {           :parameters that can be entered when function is called in cell-setup 
	gcatbar = 0   (mho/cm2)  : initialized conductance
	zetam = -3
	zetah = 5.2
	vhalfm =-36 (mV)
	vhalfh =-68 (mV)
	tm0=1.5(ms)
	th0=10(ms)
}



ASSIGNED {     : parameters needed to solve DE
	v            (mV)
	celsius      (degC)
	ica          (mA/cm2)
	cai          (mM)       :5e-5 initial internal Ca++ concentration
	eca          (mV)       : initial external Ca++ concentration
        minf
        hinf
}


STATE {	
	m 
	h 
}  

INITIAL {
	rates(v)
        m = minf
        h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ica = gcatbar*m*m*h*(v-eca)	: dummy calcium current induced by this channel

}

FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
	LOCAL z, eci, eco
	z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
	eco = co*efun(z)
	eci = ci*efun(-z)
	:high cao charge moves inward
	:negative potential charge moves inward
	ghk = (.001)*2*FARADAY*(eci - eco)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}


DERIVATIVE states {
	rates(v)
	m' = (minf -m)/tm0
	h'=  (hinf - h)/th0
}


PROCEDURE rates(v (mV)) { 
        LOCAL a, b
        
	a = alpm(v)
	minf = 1/(1+a)
        
        b = alph(v)
	hinf = 1/(1+b)
}



FUNCTION alpm(v(mV)) {
UNITSOFF
  alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION alph(v(mV)) {
UNITSOFF
  alph = exp(1.e-3*zetah*(v-vhalfh)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}


Loading data, please wait...