Status epilepticus alters dentate basket cell tonic inhibition (Yu J et al 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:155602
Status epilepticus (SE) leads to changes in dentate inhibitory neuronal networks and alters synaptic and tonic inhibition in granule cells. Recently, we identified that one week after pilocarpine-induced status epilepticus, dentate fast-spiking basket cells (FS-BCs), which underlie fast perisomatic inhibition, show two distinct changes in inhibition: (1) enhanced tonic currents (IGABA) and (2)depolarizing shift in GABA reversal (EGABA) following SE. These two changes can have opposing effects on neuronal inhibition with increases in tonic GABA conductance (gGABA) reducing excitability when the GABA currents are shunting (or hyperpolarizing) and potentially enhancing excitability when GABA currents are depolarizing. The following model is used to examine the post-SE changes in tonic GABA conductance, together with the depolarized GABA reversal potential modify FS-BC excitability and dentate network activity.
Reference:
1 . Yu J, Proddutur A, Elgammal FS, Ito T, Santhakumar V (2013) Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells. J Neurophysiol 109:1746-63 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus basket cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s):
Search NeuronDB for information about:  GabaA; Gaba;
/
YuEtAl2013
ReadMe.html
bgka.mod *
CaBK.mod *
ccanl.mod *
gap.mod
Gfluct2.mod *
gskch.mod *
hyperde3.mod *
ichan2.mod *
LcaMig.mod *
markov.mod *
nca.mod *
tca.mod *
tonic.mod *
fixed rseed Control -74 spill_ tonic 10uS with mossy kill.hoc
fixed rseed Pilo -54 spill_ tonic 10uS with mossy kill.hoc
mosinit.hoc
screenshot1.png
                            
TITLE gskch.mod  calcium-activated potassium channel (non-voltage-dependent)

COMMENT

gsk granule

ENDCOMMENT

UNITS {
        (molar) = (1/liter)
        (mM)    = (millimolar)
	(mA)	= (milliamp)
	(mV)	= (millivolt)
}

NEURON {
	SUFFIX gskch
	USEION sk READ esk WRITE isk VALENCE 1
	USEION nca READ ncai VALENCE 2
	USEION lca READ lcai VALENCE 2
	USEION tca READ tcai VALENCE 2
	RANGE gsk, gskbar, qinf, qtau, isk
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	celsius=6.3 (degC)
	v		(mV)
	dt		(ms)
	gskbar  (mho/cm2)
	esk	(mV)
	cai (mM)
	ncai (mM)
	lcai (mM)
	tcai (mM)
}

STATE { q }

ASSIGNED {
	isk (mA/cm2) gsk (mho/cm2) qinf qtau (ms) qexp
}


BREAKPOINT {          :Computes i=g*q^2*(v-esk)
	SOLVE state
        gsk = gskbar * q*q
	isk = gsk * (v-esk)
}

UNITSOFF

INITIAL {
	cai = ncai + lcai + tcai	
	q=qinf
	rate(cai)
	VERBATIM
	ncai = _ion_ncai;
	lcai = _ion_lcai;
	tcai = _ion_tcai;
	ENDVERBATIM
}


PROCEDURE state() {  :Computes state variable q at current v and dt.
	cai = ncai + lcai + tcai
	rate(cai)
	q = q + (qinf-q) * qexp
	VERBATIM
	return 0;
	ENDVERBATIM
}

LOCAL q10
PROCEDURE rate(cai) {  :Computes rate and other constants at current v.
	LOCAL alpha, beta, tinc
	q10 = 3^((celsius - 6.3)/10)
		:"q" activation system
alpha = 1.25e1 * cai * cai
beta = 0.00025 

:	alpha = 0.00246/exp((12*log10(cai)+28.48)/-4.5)
:	beta = 0.006/exp((12*log10(cai)+60.4)/35)
: alpha = 0.00246/fctrap(cai)
: beta = 0.006/fctrap(cai)
	qtau = 1 / (alpha + beta)
	qinf = alpha * qtau
	tinc = -dt*q10
	qexp = 1 - exp(tinc/qtau)*q10
}

UNITSON

Loading data, please wait...