Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)

 Download zip file 
Help downloading and running models
Accession:156780
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
Reference:
1 . Hay E, Segev I (2015) Dendritic excitability and gain control in recurrent cortical microcircuits Cerebral Cortex 25(10):3561-3571 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Laminar Connectivity; Orientation selectivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; GabaA; AMPA; NMDA; Glutamate; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow; Gaba; Glutamate;
/
HaySegev2014
models
readme.txt
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA2.mod
ProbUDFsyn2.mod *
SK_E2.mod *
SKv3_1.mod *
cell1.asc *
microcircuit.hoc
                            
:Comment :
:Reference : :		Kole,Hallermann,and Stuart, J. Neurosci. 2006

NEURON	{
	SUFFIX Ih
	NONSPECIFIC_CURRENT ihcn
	RANGE gIhbar, gIh, ihcn 
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gIhbar = 0.00001 (S/cm2) 
	ehcn =  -45.0 (mV)
}

ASSIGNED	{
	v	(mV)
	ihcn	(mA/cm2)
	gIh	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
}

STATE	{ 
	m
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gIh = gIhbar*m
	ihcn = gIh*(v-ehcn)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
}

INITIAL{
	rates()
	m = mInf
}

PROCEDURE rates(){
	UNITSOFF
        if(v == -154.9){
            v = v + 0.0001
        }
		mAlpha =  0.001*6.43*(v+154.9)/(exp((v+154.9)/11.9)-1)
		mBeta  =  0.001*193*exp(v/33.1)
		mInf = mAlpha/(mAlpha + mBeta)
		mTau = 1/(mAlpha + mBeta)
	UNITSON
}

Loading data, please wait...