Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)

 Download zip file 
Help downloading and running models
Accession:156780
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
Reference:
1 . Hay E, Segev I (2015) Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 25:3561-71 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Laminar Connectivity; Orientation selectivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; GabaA; AMPA; NMDA; Glutamate; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow; Gaba; Glutamate;
// Author: Etay Hay, 2011
//    Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of
//    Dendritic and Perisomatic Active Properties
//    (Hay et al., PLoS Computational Biology, 2011) 
//
// Model of L5 Pyramidal Cell, constrained both for BAC firing and Current Step Firing


begintemplate L5PCbiophys
public biophys

proc biophys() {
	forsec $o1.all {
	  insert pas
		cm = 1
		Ra = 100
		e_pas = -90
	}

  forsec $o1.somatic {
	  insert Ca_LVAst 
	  insert Ca_HVA 
	  insert SKv3_1 
	  insert SK_E2 
	  insert K_Tst 
	  insert K_Pst 
	  insert Nap_Et2 
	  insert NaTa_t
		insert CaDynamics_E2
		insert Ih
		ek = -85
		ena = 50
		gIhbar_Ih = 0.0002
    g_pas = 0.0000338 
  	decay_CaDynamics_E2 = 460.0 
  	gamma_CaDynamics_E2 = 0.000501 
  	gCa_LVAstbar_Ca_LVAst = 0.00343 
  	gCa_HVAbar_Ca_HVA = 0.000992 
  	gSKv3_1bar_SKv3_1 = 0.693 
  	gSK_E2bar_SK_E2 = 0.0441 
  	gK_Tstbar_K_Tst = 0.0812 
  	gK_Pstbar_K_Pst = 0.00223 
  	gNap_Et2bar_Nap_Et2 = 0.00172 
  	gNaTa_tbar_NaTa_t = 2.04 
  }

	forsec $o1.apical {
		cm = 2
		insert Ih
  	insert SK_E2 
  	insert Ca_LVAst 
  	insert Ca_HVA 
  	insert SKv3_1 
  	insert NaTa_t 
  	insert Im 
  	insert CaDynamics_E2
		ek = -85
		ena = 50
    decay_CaDynamics_E2 = 122 
    gamma_CaDynamics_E2 = 0.000509 
    gSK_E2bar_SK_E2 = 0.0012 
  	gSKv3_1bar_SKv3_1 = 0.000261 
  	gNaTa_tbar_NaTa_t = 0.0213 
  	gImbar_Im = 0.0000675 
  	g_pas = 0.0000589 
	}
	$o1.distribute_channels("apic","gIhbar_Ih",2,-0.8696,3.6161,0.0,2.0870,0.00020000000) 
	$o1.distribute_channels("apic","gCa_LVAstbar_Ca_LVAst",3,1.000000,0.010000,685.000000,885.000000,0.0187000000) 
	$o1.distribute_channels("apic","gCa_HVAbar_Ca_HVA",3,1.000000,0.100000,685.000000,885.000000,0.0005550000) 
	
  forsec $o1.basal {
		cm = 2
		insert Ih
		gIhbar_Ih = 0.0002
  	g_pas = 0.0000467 
	}

  forsec $o1.axonal {
  	g_pas = 0.0000325 
	}
}

endtemplate L5PCbiophys

Loading data, please wait...