CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:157157
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
Reference:
1 . Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 basket cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Long-term Synaptic Plasticity; STDP;
Implementer(s): Saudargiene, Ausra [ausra.saudargiene at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell;
/
SaudargieneEtAl2015
readme.html
ANsyn.mod *
bgka.mod *
bistableGB_DOWNUP.mod
burststim2.mod *
cad.mod
cadiffus.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
gskch.mod *
h.mod
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod
ichan2.mod
Ih.mod *
kadbru.mod
kadist.mod *
kapbru.mod
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nap.mod
Nasoma.mod *
nca.mod *
nmda.mod *
nmdaca.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
apical-non-trunk-list.hoc
apical-tip-list.hoc
apical-tip-list-addendum.hoc
apical-trunk-list.hoc
axoaxonic_cell17S.hoc
axon-sec-list.hoc
BasalPath.hoc
basal-paths.hoc
basal-tree-list.hoc
basket_cell17S.hoc
bistratified_cell13S.hoc
burst_cell.hoc
current-balance.hoc *
main.hoc
map-segments-to-3d.hoc *
mod_func.c
mosinit.hoc
ObliquePath.hoc *
oblique-paths.hoc
olm_cell2.hoc
pattsN100S20P5_single.dat
PC.ses
peri-trunk-list.hoc
pyramidalNeuron.hoc
randomLocation.hoc
ranstream.hoc
screenshot.png
soma-list.hoc
stim_cell.hoc *
vector-distance.hoc
                            
COMMENT
IA channel

Reference:

1.	Zhang, L. and McBain, J. Voltage-gated potassium currents in
	stratum oriens-alveus inhibitory neurons of the rat CA1
	hippocampus, J. Physiol. 488.3:647-660, 1995.

		Activation V1/2 = -14 mV
		slope = 16.6
		activation t = 5 ms
		Inactivation V1/2 = -71 mV
		slope = 7.3
		inactivation t = 15 ms
		recovery from inactivation = 142 ms

2.	Martina, M. et al. Functional and Molecular Differences between
	Voltage-gated K+ channels of fast-spiking interneurons and pyramidal
	neurons of rat hippocampus, J. Neurosci. 18(20):8111-8125, 1998.	
	(only the gkAbar is from this paper)

		gkabar = 0.0175 mho/cm2
		Activation V1/2 = -6.2 +/- 3.3 mV
		slope = 23.0 +/- 0.7 mV
		Inactivation V1/2 = -75.5 +/- 2.5 mV
		slope = 8.5 +/- 0.8 mV
		recovery from inactivation t = 165 +/- 49 ms  

3.	Warman, E.N. et al.  Reconstruction of Hippocampal CA1 pyramidal
	cell electrophysiology by computer simulation, J. Neurophysiol.
	71(6):2033-2045, 1994.

		gkabar = 0.01 mho/cm2
		(number taken from the work by Numann et al. in guinea pig
		CA1 neurons)

ENDCOMMENT

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
        SUFFIX IA
        USEION k READ ek WRITE ik
        RANGE gkAbar,ik
        GLOBAL ainf, binf, aexp, bexp, tau_b
}
 
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
 
PARAMETER {
        v (mV)
        p = 5 (degC)
        dt (ms)
        gkAbar = 0.0165 (mho/cm2)	:from Martina et al.
        ek = -90 (mV)
	tau_a = 5 (ms)
}
 
STATE {
        a b
}
 
ASSIGNED {
        ik (mA/cm2)
	ainf binf aexp bexp
	tau_b
}
 
BREAKPOINT {
        SOLVE deriv METHOD derivimplicit
        ik = gkAbar*a*b*(v - ek)
}
 
INITIAL {
	rates(v)
	a = ainf
	b = binf
}

DERIVATIVE deriv {  :Computes state variables m, h, and n rates(v)      
		: at the current v and dt.
        a' = (ainf - a)/(tau_a)
        b' = (binf - b)/(tau_b)
}
 
PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL alpha_b, beta_b
	TABLE ainf, aexp, binf, bexp, tau_a, tau_b  DEPEND dt, p FROM -200
TO 100 WITH 300
	alpha_b = 0.000009/exp((v-26)/18.5)
	beta_b = 0.014/(exp((v+70)/(-11))+0.2)
        ainf = 1/(1 + exp(-(v + 14)/16.6))
        aexp = 1 - exp(-dt/(tau_a))
	tau_b = 1/(alpha_b + beta_b)
        binf = 1/(1 + exp((v + 71)/7.3))
        bexp = 1 - exp(-dt/(tau_b))
}
 
UNITSON


Loading data, please wait...