CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:157157
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
Reference:
1 . Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 basket cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Long-term Synaptic Plasticity; STDP;
Implementer(s): Saudargiene, Ausra [ausra.saudargiene at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell;
/
SaudargieneEtAl2015
readme.html
ANsyn.mod *
bgka.mod *
bistableGB_DOWNUP.mod
burststim2.mod *
cad.mod
cadiffus.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
gskch.mod *
h.mod
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod
ichan2.mod
Ih.mod *
kadbru.mod
kadist.mod *
kapbru.mod
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nap.mod
Nasoma.mod *
nca.mod *
nmda.mod *
nmdaca.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
apical-non-trunk-list.hoc
apical-tip-list.hoc
apical-tip-list-addendum.hoc
apical-trunk-list.hoc
axoaxonic_cell17S.hoc
axon-sec-list.hoc
BasalPath.hoc
basal-paths.hoc
basal-tree-list.hoc
basket_cell17S.hoc
bistratified_cell13S.hoc
burst_cell.hoc
current-balance.hoc *
main.hoc
map-segments-to-3d.hoc *
mod_func.c
mosinit.hoc
ObliquePath.hoc *
oblique-paths.hoc
olm_cell2.hoc
pattsN100S20P5_single.dat
PC.ses
peri-trunk-list.hoc
pyramidalNeuron.hoc
randomLocation.hoc
ranstream.hoc
screenshot.png
soma-list.hoc
stim_cell.hoc *
vector-distance.hoc
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997
: modified by Poirazi on 10/2/00 according to Hoffman_etal97 
: to account for I_A proximal (<100microns)
: (n) activation, (l) inactivation


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
        dt (ms)
	v (mV)
        ek (mV)              : must be explicitely def. in hoc
	gkabar=.007 (mho/cm2)
        vhalfn= 11   (mV)
        vhalfl=-56   (mV)
        a0l=0.05      (/ms)
        a0n=0.05    (/ms)
}

NEURON {
	SUFFIX kapbru
	USEION k READ ek WRITE ik
        RANGE gkabar,gka
        GLOBAL ninf,linf,taul,taun
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf
        taul
        taun
        gka
}

INITIAL {
	rates(v)
	n=ninf
	l=linf
	gka = gkabar*n^4*l
	ik = gka*(v-ek)
}

BREAKPOINT {
	SOLVE states
	gka = gkabar*n^4*l
	ik = gka*(v-ek)
}

FUNCTION alpn(v(mV)) {
  alpn = -0.01*(v+21.3)/(exp((v+21.3)/-35)-1)
}


FUNCTION betn(v(mV)) {
  betn = 0.01*(v+21.3)/(exp((v+21.3)/35)-1)
}

FUNCTION alpl(v(mV)) {
  alpl = -0.01*(v+58)/(exp((v+58)/8.2)-1)
}

FUNCTION betl(v(mV)) {
  betl = 0.01*(v+58)/(exp((v+58)/-8.2)-1)
}

LOCAL facn,facl
PROCEDURE states() {     : exact when v held constant; integrates over dt step
        rates(v)
        n = n + facn*(ninf - n)
        l = l + facl*(linf - l)
        VERBATIM
        return 0;
        ENDVERBATIM
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,b
        a = alpn(v)
        b = betn(v)
        ninf = a/(a + b)
        taun = 0.2
        facn = (1 - exp(-dt/taun))
        a = alpl(v)
        b = betl(v)
        linf = a/(a + b)
        
        if (v > -20) {
	   taul = 5 + 2.6*(v+20)/10
        } else {
	   taul = 5
        }
        facl = (1 - exp(-dt/taul))
}

Loading data, please wait...