CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:157157
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
Reference:
1 . Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 basket cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Long-term Synaptic Plasticity; STDP;
Implementer(s): Saudargiene, Ausra [ausra.saudargiene at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell;
/
SaudargieneEtAl2015
readme.html
ANsyn.mod *
bgka.mod *
bistableGB_DOWNUP.mod
burststim2.mod *
cad.mod
cadiffus.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
gskch.mod *
h.mod
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod
ichan2.mod
Ih.mod *
kadbru.mod
kadist.mod *
kapbru.mod
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nap.mod
Nasoma.mod *
nca.mod *
nmda.mod *
nmdaca.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
apical-non-trunk-list.hoc
apical-tip-list.hoc
apical-tip-list-addendum.hoc
apical-trunk-list.hoc
axoaxonic_cell17S.hoc
axon-sec-list.hoc
BasalPath.hoc
basal-paths.hoc
basal-tree-list.hoc
basket_cell17S.hoc
bistratified_cell13S.hoc
burst_cell.hoc
current-balance.hoc *
main.hoc
map-segments-to-3d.hoc *
mod_func.c
mosinit.hoc
ObliquePath.hoc *
oblique-paths.hoc
olm_cell2.hoc
pattsN100S20P5_single.dat
PC.ses
peri-trunk-list.hoc
pyramidalNeuron.hoc
randomLocation.hoc
ranstream.hoc
screenshot.png
soma-list.hoc
stim_cell.hoc *
vector-distance.hoc
                            
// Given a reference point (ie, soma), an apex point, and a point of
// interest, (POI), this function returns the distance from the reference point to
// the POI. These three points are vectors with x,y,z as their values
// written by Terrence Brannon, last modified by Yiota Poirazi, July 2001, poirazi@LNC.usc.edu

objref RP, POI, APEX

proc pvec() {
  printf("%s: \t", $s1)
  $o2.printf("%f ")
}

proc pvecs() {
  pvec("RP", RP)
  pvec("APEX",APEX)
  pvec("POI",POI)
}

proc clear_vecs() {
  RP=new Vector()
  APEX=new Vector()
  POI=new Vector()
}

objref vhold
vhold=new Vector()


func vector_distance() { local adjustment
//  print "func vector_distance() {"

  clear_vecs()
  
  RP=$o1.c
  APEX=$o2.c
  POI=$o3.c
  adjustment = $4

//  pvecs()

  // Subtract Psoma: Qapex = Papex - Psoma. Therefore Qsoma=0,0,0

  APEX.sub(RP)
  POI.sub(RP)
    RP.sub(RP)

//    pvecs()

  // Normalize Qapex, Creating Uapex

  vhold=APEX.c
  vhold.mul(vhold)
  APEX_BAR=sqrt(vhold.sum())

//  printf("APEX_BAR: %f\n", APEX_BAR)

  APEX.div(APEX_BAR)

//  pvec("UAPEX", APEX)

  // Find length of projection of Qdend onto Uapex

  H = POI.dot(APEX) + adjustment
  
  H=abs(H)

  return(H)
}

objref fvd_vec
strdef fvd_str
func find_vector_distance() {

  fvd_vec=new Vector()
  sprint(fvd_str, "access %s", $s1)
  execute1(fvd_str)
  
  vcreate2(fvd_vec,0)
  
  return(vector_distance(vRP,vAPEX,fvd_vec,adjustment))
}

func find_vector_distance_precise() {

  fvd_vec=new Vector()
  sprint(fvd_str, "access %s", $s1)
  execute1(fvd_str)
  
  vcreate3(fvd_vec,$2)
  
  return(vector_distance(vRP,vAPEX,fvd_vec,adjustment))
}

proc vcreate() {
  $o1.append(x3d(0))
  $o1.append(y3d(0))
  $o1.append(z3d(0))
}

proc vcreate2() {
  $o1.append(x3d($2))
  $o1.append(y3d($2))
  $o1.append(z3d($2))
}

proc vcreate3() {
  $o1.append(x_d3($2))
  $o1.append(y_d3($2))
  $o1.append(z_d3($2))
}

Loading data, please wait...