CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:157157
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
Reference:
1 . Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 basket cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Long-term Synaptic Plasticity; STDP;
Implementer(s): Saudargiene, Ausra [ausra.saudargiene at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell;
/
SaudargieneEtAl2015
readme.html
ANsyn.mod *
bgka.mod *
bistableGB_DOWNUP.mod
burststim2.mod *
cad.mod
cadiffus.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
gskch.mod *
h.mod
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod
ichan2.mod
Ih.mod *
kadbru.mod
kadist.mod *
kapbru.mod
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nap.mod
Nasoma.mod *
nca.mod *
nmda.mod *
nmdaca.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
apical-non-trunk-list.hoc
apical-tip-list.hoc
apical-tip-list-addendum.hoc
apical-trunk-list.hoc
axoaxonic_cell17S.hoc
axon-sec-list.hoc
BasalPath.hoc
basal-paths.hoc
basal-tree-list.hoc
basket_cell17S.hoc
bistratified_cell13S.hoc
burst_cell.hoc
current-balance.hoc *
main.hoc
map-segments-to-3d.hoc *
mod_func.c
mosinit.hoc
ObliquePath.hoc *
oblique-paths.hoc
olm_cell2.hoc
pattsN100S20P5_single.dat
PC.ses
peri-trunk-list.hoc
pyramidalNeuron.hoc
randomLocation.hoc
ranstream.hoc
screenshot.png
soma-list.hoc
stim_cell.hoc *
vector-distance.hoc
                            
: from Durstewitz & Gabriel (2006), Cerebral Cortex

TITLE nmda synapse 

NEURON {
	POINT_PROCESS NMDA
	NONSPECIFIC_CURRENT i
        RANGE g,a,b,gNMDAmax,tauD,tauF,util,tcon,tcoff,enmda
}

UNITS {
        (uS) = (microsiemens)
        (nA) = (nanoamp)
        (mV) = (millivolt)
}

PARAMETER {
	tcon = 2.3 (ms)
	tcoff = 95.0 (ms)
	enmda = 0 	(mV)
	gNMDAmax = 0	(uS)
        tauD = 800         (ms)
        tauF = 800         (ms)
        util= .3
}

ASSIGNED {
	v 	(mV)
	i	(nA)
	g       (uS)
	factor
}

INITIAL { 
   a=0  
   b=0 
   factor=tcon*tcoff/(tcoff-tcon)
}

STATE {
      a
      b
}

BREAKPOINT {
	LOCAL s
	SOLVE states METHOD derivimplicit
	s = 1.50265/(1+0.33*exp(-0.0625*v))
        g = b-a
	i = gNMDAmax*g*s*(v-enmda)
}

DERIVATIVE states {
	a' = -a/tcon
	b' = -b/tcoff
}

NET_RECEIVE(wgt,R,u,tlast (ms),nspike) {
        LOCAL x
        :printf("entry flag=%g t=%g\n", flag, tlast)
        if (nspike==0) { R=1  u=util }
	else {
	     if (tauF>0) { u=util+(1-util)*u*exp(-(t-tlast)/tauF) }
	     if (tauD>0) { R=1+(R*(1-u)-1)*exp(-(t-tlast)/tauD) }
	     }
	x=wgt*factor*R*u
	state_discontinuity(a,a+x)
	state_discontinuity(b,b+x)
        tlast=t
        nspike= nspike+1
}

Loading data, please wait...