Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod
ampain.mod
cadyn.mod
cadynin.mod
cal.mod
calc.mod
calcb.mod
can.mod
cancr.mod
canin.mod
car.mod
cat.mod
catcb.mod
gabaa.mod *
gabaain.mod
gabab.mod
h.mod
hcb.mod
hin.mod
ican.mod
iccb.mod
iccr.mod
icin.mod
iks.mod
ikscb.mod
ikscr.mod
iksin.mod
kadist.mod
kadistcr.mod
kadistin.mod
kaprox.mod
kaproxcb.mod
kaproxin.mod
kca.mod
kcain.mod
kct.mod
kctin.mod
kdr.mod *
kdrcb.mod
kdrcr.mod
kdrin.mod
naf.mod
nafcb.mod
nafcr.mod
nafin.mod
nafx.mod
nap.mod *
netstim.mod *
NMDA.mod
NMDAIN.mod
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
TITLE simple NMDA receptors

COMMENT
-----------------------------------------------------------------------------

Essentially the same as /examples/nrniv/netcon/ampa.mod in the NEURON
distribution - i.e. Alain Destexhe's simple AMPA model - but with
different binding and unbinding rates and with a magnesium block.
Modified by Andrew Davison, The Babraham Institute, May 2000


	Simple model for glutamate AMPA receptors
	=========================================

  - FIRST-ORDER KINETICS, FIT TO WHOLE-CELL RECORDINGS

    Whole-cell recorded postsynaptic currents mediated by AMPA/Kainate
    receptors (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994) were used
    to estimate the parameters of the present model; the fit was performed
    using a simplex algorithm (see Destexhe et al., J. Computational Neurosci.
    1: 195-230, 1994).

  - SHORT PULSES OF TRANSMITTER (0.3 ms, 0.5 mM)

    The simplified model was obtained from a detailed synaptic model that 
    included the release of transmitter in adjacent terminals, its lateral 
    diffusion and uptake, and its binding on postsynaptic receptors (Destexhe
    and Sejnowski, 1995).  Short pulses of transmitter with first-order
    kinetics were found to be the best fast alternative to represent the more
    detailed models.

  - ANALYTIC EXPRESSION

    The first-order model can be solved analytically, leading to a very fast
    mechanism for simulating synapses, since no differential equation must be
    solved (see references below).



References

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  An efficient method for
   computing synaptic conductances based on a kinetic model of receptor binding
   Neural Computation 6: 10-14, 1994.  

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
   excitable membranes, synaptic transmission and neuromodulation using a 
   common kinetic formalism, Journal of Computational Neuroscience 1: 
   195-230, 1994.

Kiki Sidiropoulou
Adjusted Cdur and Beta for better nmda spikes

-----------------------------------------------------------------------------
ENDCOMMENT



NEURON {
	POINT_PROCESS NMDA
	RANGE g, Alpha, Beta, e, gmax, ica
	USEION ca WRITE ica
	NONSPECIFIC_CURRENT  iNMDA            
	GLOBAL Cdur, mg, Cmax
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
	(mM) = (milli/liter)
}

PARAMETER {
	Cmax	= 1	 (mM)           : max transmitter concentration
	Cdur	= 1	 (ms)		: transmitter duration (rising phase) 
	Alpha	= 4	 (/ms /mM)	: forward (binding) rate (4)
	Beta	= 0.015 (/ms)		: backward (unbinding) rate
	e	= 0	 (mV)		: reversal potential
        mg      = 1      (mM)           : external magnesium concentration

}


ASSIGNED {
	v		(mV)		: postsynaptic voltage
	iNMDA 		(nA)		: current = g*(v - e)
	g 		(umho)		: conductance
	Rinf				: steady state channels open
	Rtau		(ms)		: time constant of channel binding
	synon
        B 
	gmax                              : magnesium block
	ica
}

STATE {Ron Roff}

INITIAL {
	Rinf = Cmax*Alpha / (Cmax*Alpha + Beta)
	Rtau = 1 / (Cmax*Alpha + Beta)
	synon = 0
}

BREAKPOINT {
	SOLVE release METHOD cnexp
        B = mgblock(v)
	g = (Ron + Roff)*1(umho) * B
	iNMDA = g*(v - e)
        ica = 7*iNMDA/10   :(5-10 times more permeable to Ca++ than Na+ or K+, Ascher and Nowak, 1988)
        iNMDA = 3*iNMDA/10

}

DERIVATIVE release {
	Ron' = (synon*Rinf - Ron)/Rtau
	Roff' = -Beta*Roff
}

FUNCTION mgblock(v(mV)) {
        TABLE 
        DEPEND mg
        FROM -140 TO 80 WITH 1000

        : from Jahr & Stevens

      
	 mgblock = 1 / (1 + exp(0.072 (/mV) * -v) * (mg / 3.57 (mM)))  
	
}

: following supports both saturation from single input and
: summation from multiple inputs
: if spike occurs during CDur then new off time is t + CDur
: ie. transmitter concatenates but does not summate
: Note: automatic initialization of all reference args to 0 except first

			
NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {
	: flag is an implicit argument of NET_RECEIVE and  normally 0
        if (flag == 0) { : a spike, so turn on if not already in a Cdur pulse
		nspike = nspike + 1
		if (!on) {
			r0 = r0*exp(-Beta*(t - t0))
			t0 = t
			on = 1
			synon = synon + weight
			state_discontinuity(Ron, Ron + r0)
			state_discontinuity(Roff, Roff - r0)
		}
:		 come again in Cdur with flag = current value of nspike
		net_send(Cdur, nspike)
       }
	if (flag == nspike) { : if this associated with last spike then turn off
		r0 = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)
		t0 = t
		synon = synon - weight
		state_discontinuity(Ron, Ron - r0)
		state_discontinuity(Roff, Roff + r0)
		on = 0
	}
gmax = weight
}



Loading data, please wait...