Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod *
ampain.mod *
cadyn.mod *
cadynin.mod *
cal.mod *
calc.mod *
calcb.mod *
can.mod *
cancr.mod *
canin.mod *
car.mod *
cat.mod *
catcb.mod *
gabaa.mod *
gabaain.mod *
gabab.mod *
h.mod *
hcb.mod *
hin.mod *
ican.mod *
iccb.mod *
iccr.mod *
icin.mod *
iks.mod *
ikscb.mod *
ikscr.mod *
iksin.mod *
kadist.mod *
kadistcr.mod *
kadistin.mod *
kaprox.mod *
kaproxcb.mod *
kaproxin.mod *
kca.mod *
kcain.mod *
kct.mod *
kctin.mod *
kdr.mod *
kdrcb.mod *
kdrcr.mod *
kdrin.mod *
naf.mod *
nafcb.mod *
nafcr.mod *
nafin.mod *
nafx.mod *
nap.mod *
netstim.mod *
NMDA.mod *
NMDAIN.mod *
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
TITLE L-type calcium channel with high threshold for activation
: used in somatic and dendritic regions 
: 
: After Borg 
:  Updated by Maria Markaki  12/02/03

NEURON {
	SUFFIX calcb
	USEION ca READ cai, eca WRITE ica
        RANGE gcalbar, ica, po
	GLOBAL inf, s_inf, tau_m
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) =	(millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}


PARAMETER {     
  	ki     = 0.025  (mM)            : middle point of inactivation fct
	gcalbar = 0   (mho/cm2)  : initialized conductance
 	taumin  = 180    (ms)            : minimal value of the time cst
        vhalf = -1 (mV)       :half potential for activation 
	zeta=-4.6
	t0=1.5(ms)
	b = 0.01 	(mM) 
        ba = 0.01	(mM)
	bo = 8
}


ASSIGNED {      : parameters needed to solve DE
        v               (mV)
 	celsius         (degC)
	cai             (mM)      : initial internal Ca++ concentration
	ica             (mA/cm2)
	eca             (mV)
:	ical             (mA/cm2)
	po
        inf
	s_inf
	tau_m           (ms)
}

STATE {	
	m 
	s 
} 


INITIAL {
	rates(v,cai)
	m = inf    : initial activation parameter value
	s = s_inf
}

FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	po = m*m*h2(cai)
	ica = gcalbar*(po+s*s*bo)*(v-eca)
}


DERIVATIVE states {
	rates(v,cai)
	m' = (inf-m)/t0
	s' = (s_inf-s)/tau_m
}



FUNCTION alp(v(mV)) {       
UNITSOFF
  alp = exp(1.e-3*zeta*(v-vhalf)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

PROCEDURE rates(v(mV), cai(mM)) {LOCAL a, alpha2
		a = alp(v)
		inf = 1/(1+a)
		alpha2 = (cai/b)^2
		s_inf = alpha2 / (alpha2 + 1)
		tau_m = taumin+ 1(ms)*1(mM)/(cai+ba)
}


Loading data, please wait...