Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod
ampain.mod
cadyn.mod
cadynin.mod
cal.mod
calc.mod
calcb.mod
can.mod
cancr.mod
canin.mod
car.mod
cat.mod
catcb.mod
gabaa.mod *
gabaain.mod
gabab.mod
h.mod
hcb.mod
hin.mod
ican.mod
iccb.mod
iccr.mod
icin.mod
iks.mod
ikscb.mod
ikscr.mod
iksin.mod
kadist.mod
kadistcr.mod
kadistin.mod
kaprox.mod
kaproxcb.mod
kaproxin.mod
kca.mod
kcain.mod
kct.mod
kctin.mod
kdr.mod *
kdrcb.mod
kdrcr.mod
kdrin.mod
naf.mod
nafcb.mod
nafcr.mod
nafin.mod
nafx.mod
nap.mod *
netstim.mod *
NMDA.mod
NMDAIN.mod
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
TITLE t-type calcium channel with high threshold for activation
: used in somatic and dendritic regions 
: Updated to use CVode --Carl Gold 08/10/03


NEURON {
	SUFFIX cat
	USEION ca READ cai, eca    
        RANGE gcatbar, iCa
        RANGE gcatbar, ica
	GLOBAL hinf, minf
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) =	(millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}

PARAMETER {           
	gcatbar = 0   (mho/cm2)  : initialized conductance
	zetam = -3
	zetah = 5.2
	vhalfm =-36 (mV)
	vhalfh =-68 (mV)
	tm0=1.5(ms)
	th0=10(ms)
}



ASSIGNED {     : parameters needed to solve DE
	v            (mV)
	celsius      (degC)
	ica          (mA/cm2)
	cai          (mM)       :5e-5 initial internal Ca++ concentration
	eca          (mV)       : initial external Ca++ concentration
        minf
        hinf
}


STATE {	
	m 
	h 
}  

INITIAL {
	rates(v)
        m = minf
        h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ica = gcatbar*m*m*h*(v-eca)	: dummy calcium current induced by this channel

}

FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
	LOCAL z, eci, eco
	z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
	eco = co*efun(z)
	eci = ci*efun(-z)
	ghk = (.001)*2*FARADAY*(eci - eco)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}


DERIVATIVE states {
	rates(v)
	m' = (minf -m)/tm0
	h'=  (hinf - h)/th0
}


PROCEDURE rates(v (mV)) { 
        LOCAL a, b
        
	a = alpm(v)
	minf = 1/(1+a)
        
        b = alph(v)
	hinf = 1/(1+b)
}



FUNCTION alpm(v(mV)) {
UNITSOFF
  alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION alph(v(mV)) {
UNITSOFF
  alph = exp(1.e-3*zetah*(v-vhalfh)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}


Loading data, please wait...