Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod *
ampain.mod *
cadyn.mod *
cadynin.mod *
cal.mod *
calc.mod *
calcb.mod *
can.mod *
cancr.mod *
canin.mod *
car.mod *
cat.mod *
catcb.mod *
gabaa.mod *
gabaain.mod *
gabab.mod *
h.mod *
hcb.mod *
hin.mod *
ican.mod *
iccb.mod *
iccr.mod *
icin.mod *
iks.mod *
ikscb.mod *
ikscr.mod *
iksin.mod *
kadist.mod *
kadistcr.mod *
kadistin.mod *
kaprox.mod *
kaproxcb.mod *
kaproxin.mod *
kca.mod *
kcain.mod *
kct.mod *
kctin.mod *
kdr.mod *
kdrcb.mod *
kdrcr.mod *
kdrin.mod *
naf.mod *
nafcb.mod *
nafcr.mod *
nafin.mod *
nafx.mod *
nap.mod *
netstim.mod *
NMDA.mod *
NMDAIN.mod *
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
TITLE  H-current that uses Na ions
: Updated to use Cvode by Yiota Poirazi 12/1/2005

NEURON {
	SUFFIX hin
        RANGE  gbar,vhalf, K, taun, ninf, g, ihi    
	USEION hi READ ehi WRITE ihi VALENCE 1      

}

UNITS {
	(um) = (micrometer)
	(mA) = (milliamp)
	(uA) = (microamp)
	(mV) = (millivolt)
	(pmho) = (picomho)
	(mmho) = (millimho)
}

:INDEPENDENT {t FROM 0 TO 1 WITH 100 (ms)}

PARAMETER {              
        ena    = 55    (mV)
        ehi     = -10   (mV)
	K      = 10.0   (mV)
	gbar   = 0     (mho/cm2)  : initialize conductance to zero
	vhalf  = -90   (mV)       : half potential
}	


STATE {                
	n
}

ASSIGNED {            
        v 
:	ina (mA/cm2)
	ihi (mA/cm2)
	ninf
	taun (ms)
	g
}


INITIAL {               
	rates()	
	n = ninf
	g = gbar*n
	ihi = g*(v-ehi)
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	g = gbar*n  
	ihi = g*(v-ehi)  
}

DERIVATIVE states {
	rates()
        n' = (ninf - n)/taun
}

PROCEDURE rates() {  
 
 	if (v > -10) {
	   taun = 1
	} else {
           taun = 2*(1/(exp((v+145)/-17.5)+exp((v+16.8)/16.5)) + 10) :h activation tau +5

	}  
         ninf = 1 - (1 / (1 + exp((vhalf - v)/K)))                  :steady state value
}




Loading data, please wait...