Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod
ampain.mod
cadyn.mod
cadynin.mod
cal.mod
calc.mod
calcb.mod
can.mod
cancr.mod
canin.mod
car.mod
cat.mod
catcb.mod
gabaa.mod *
gabaain.mod
gabab.mod
h.mod
hcb.mod
hin.mod
ican.mod
iccb.mod
iccr.mod
icin.mod
iks.mod
ikscb.mod
ikscr.mod
iksin.mod
kadist.mod
kadistcr.mod
kadistin.mod
kaprox.mod
kaproxcb.mod
kaproxin.mod
kca.mod
kcain.mod
kct.mod
kctin.mod
kdr.mod *
kdrcb.mod
kdrcr.mod
kdrin.mod
naf.mod
nafcb.mod
nafcr.mod
nafin.mod
nafx.mod
nap.mod *
netstim.mod *
NMDA.mod
NMDAIN.mod
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
TITLE Slow Ca-dependent potassium current
:
:   Ca++ dependent K+ current responsible for slow AHP

NEURON {
	SUFFIX kcain
	USEION k READ ko, ki WRITE ik
	USEION ca READ cai
	RANGE  gbar, po, ik
	GLOBAL m_inf, tau_m
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

ASSIGNED {       : parameters needed to solve DE
	v               (mV)
	celsius         (degC)
	ek              (mV)
	cai             (mM)           : initial [Ca]i
	ik              (mA/cm2)
	po
	ki 		(mM)
	ko		(mM)
	m_inf
	tau_m           (ms)
:	h_inf				:inactivation 
:	tau_h		(ms)
:	taumin
}

PARAMETER {
	gbar    = 10   (mho/cm2)
:        ek	 	(mV)
	taumin  = 0	(ms)  :(150)
	b 	= 0.008 (/ms)  : changed oct 17, 2006 for pfc (0.3)
	:b 	= 0.8		: value for CA1 neuron(2006)
:	tau_h	= 300	(ms)
}


STATE {
	m   
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ek = 25 * log(ko/ki)
	po = m*m
	ik = gbar*po*(v - ek)    : potassium current induced by this channel
}

DERIVATIVE states {
	rates(cai)
:	m'=(-1/(tau_m))*(m-(m_inf)) 

	m' = (m_inf - m) / tau_m : old equation
:	h'=(h_inf - h)/tau_h	
	
} 


INITIAL {
	rates(cai)
	m = 0
:	m = m_inf

:	h = h_inf
}


PROCEDURE rates(cai(mM)) { 
	LOCAL a
:	a=100
:	m_inf=(a*cai*cai)/(a*cai*cai+b)
:	tau_m=(1/(a*cai*cai+b))
	
:old equations	
	a = cai/b
	m_inf = a/(a+1)
:	tau_m=600
	tau_m = taumin+ 1(ms)*1(mM)*b/(cai+b)

:inactivation
:	h_inf= ah/(ah+1)
}

Loading data, please wait...