Effects of spinal cord stimulation on WDR dorsal horn network (Zhang et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168414
" ... To study the mechanisms underlying SCS (Spinal cord stimulation), we constructed a biophysically-based network model of the dorsal horn circuit consisting of interconnected dorsal horn interneurons and a wide dynamic range (WDR) projection neuron and representations of both local and surround receptive field inhibition. We validated the network model by reproducing cellular and network responses relevant to pain processing including wind-up, A-fiber mediated inhibition, and surround receptive field inhibition. ..." See paper for more.
Reference:
1 . Zhang TC, Janik JJ, Grill WM (2014) Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. J Neurophysiol 112:552-67 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Wide dynamic range neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate; Glycine;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Zhang, Tianhe [tz5@duke.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Glutamate; Glycine;
/
ZhangEtAl2014
Critical Mod Files
AMPA_DynSyn.mod
B_A.mod
B_DR.mod
B_NA.mod
CaIntraCellDyn.mod *
GABAa_DynSyn.mod *
GABAb_DynSyn.mod *
Glycine_DynSyn.mod
HH2.mod *
HH2new.mod *
iCaAN.mod *
iCaL.mod
iKCa.mod *
iNaP.mod *
KDR.mod
KDRI.mod
NK1_DynSyn.mod *
NMDA_DynSyn.mod *
SS.mod
vsource.mod *
                            
TITLE HH sodium channel
: Hodgkin - Huxley squid sodium channel

: The model used in Melnick et al. 2004 Adapt 5 and 11 mV

NEURON {
	SUFFIX B_Na
	USEION na READ ena WRITE ina
	RANGE gnabar, ina
	GLOBAL inf, alpha_shift, beta_shift
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
	v (mV)
	celsius = 37	(degC)
	dt (ms)
	gnabar=0 (mho/cm2) <0,1e9>
	ena = 53 (mV)
	alpha_shift = 0 (mV)
	beta_shift = 0 (mV)
}
STATE {
	m h
}
ASSIGNED {
	ina (mA/cm2)
	inf[2]
}
LOCAL	fac[2]

INITIAL {
	rate(v*1(/mV))
	m = inf[0]
	h = inf[1]
}

BREAKPOINT {
	SOLVE states
	ina = gnabar*m*m*m*h*(v - ena)
}

PROCEDURE states() {	: exact when v held constant
	rate(v*1(/mV))
	m = m + fac[0]*(inf[0] - m)
	h = h + fac[1]*(inf[1] - h)
	VERBATIM
	return 0;
	ENDVERBATIM
}

UNITSOFF
FUNCTION alp(v(mV),i) { LOCAL a,b,c,q10 :rest = -70  order m,h
	v = v :convert to hh convention
	q10 = 3^((celsius - 23)/10)
	if (i==0) {
		alp = q10*.182*expM1(-v + 7 - 35 + alpha_shift, 9)
	}else if (i==1){
		alp = q10 * 1 *(0.061*expM1(-v + 13 - 48 + alpha_shift, 3) + 0.0166)


	}
}

FUNCTION bet(v,i) { LOCAL a,b,c,q10 :rest = -70  order m,h
	v = v 
	q10 = 3^((celsius - 23)/10)
	if (i==0) {
		bet = q10*.124*expM1(v - 7 + 35 + beta_shift, 9)
	}else if (i==1){
		bet = q10 * 1 *.0018*expM1(v - 13 + 84 + beta_shift, 18)
	}
}

FUNCTION expM1(x,y) {
	if (fabs(x/y) < 1e-6) {
		expM1 = y*(1 - x/y/2)
	}else{
		expM1 = x/(exp(x/y) - 1)
	}
}

PROCEDURE rate(v) {LOCAL a, b, tau :rest = -70
:	TABLE inf, fac DEPEND dt, celsius FROM -150 TO 100 WITH 200
	FROM i=0 TO 1 {
		a = alp(v,i)  b=bet(v,i)
		tau = 1/(a + b)
		if (i==0) {		
		inf[i] = a/(a+b)
	}else if (i==1) {
		inf[i] = 1/(1+exp((v+75-11)/9))
	} 
		fac[i] = (1 - exp(-dt/tau))
	}
}
UNITSON

Loading data, please wait...