ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/168591.

3D olfactory bulb: operators (Migliore et al, 2015)

 Download zip file 
Help downloading and running models
Accession:168591
"... Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. ..."
Reference:
1 . Migliore M, Cavarretta F, Marasco A, Tulumello E, Hines ML, Shepherd GM (2015) Synaptic clusters function as odor operators in the olfactory bulb. Proc Natl Acad Sci U S A 112:8499-504 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Sensory processing; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I Na,t; I A; I K; Gaba; Glutamate;
/
figure1eBulb3D
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
fi_stdp.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
.hg_archival.txt
all2all.py *
balance.py *
bindict.py
binsave.py
binspikes.py
BulbSurf.py
catfiles.sh
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
falsegloms.txt
fixnseg.hoc *
g37e1i002.py
gidfunc.py *
Glom.py *
granule.hoc *
granules.py
grow.py
input-odors.txt *
loadbalutil.py *
lpt.py *
m2g_connections.py
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mkdict.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
realSoma.py *
runsim.py
spike2file.hoc *
split.py *
util.py *
vrecord.py
weightsave.py *
                            
# spike read spikes and print using
# matplotlib the data

# hebbian step func.
aLTP=2e-2
aLTD=2e-2
tauLTP=20.
tauLTD=20.
delay_post=3
delay_pre=1
wmax=1.

import params
def syn_hebb(ispre, w, tpre, tpost, P, M, t):
  from math import exp
  if ispre:
    P=P*exp((tpre-t)/tauLTP)+aLTP
    interval=tpost-t
    dw=wmax*M*exp(interval/tauLTD)
  else:
    M=M*exp((tpost-t)/tauLTD)-aLTD
    interval=t-tpre
    dw=wmax*P*exp(-interval/tauLTP)

  w += dw
  if w > wmax: w = wmax
  elif w < 0: w = 0
  return w, P, M

def hebbian(winit, trpre, trpost):
  # this destroy vector data
  for i in range(len(trpre)):
    trpre[i] += delay_pre
  for i in range(len(trpost)):
    trpost[i] += delay_post

  t=[0]
  w=[winit]
  P=M=0
  i=j=1
  while i<len(trpre) and j<len(trpost):
    if trpre[i] <= trpost[j]:
      ispre=True
      t.append(trpre[i])
    else:
      ispre=False
      t.append(trpost[j])
    wnew,P,M=syn_hebb(ispre,w[-1],trpre[i-1],trpost[j-1],P,M,t[-1])
    w.append(wnew)
    if ispre:
      i+=1
    else:
      j+=1

  for i in range(i,len(trpre)):
    t.append(trpre[i])
    wnew,P,M=syn_hebb(True,w[-1],trpre[i-1],trpost[j-1],P,M,t[-1])
    w.append(wnew)   

  for j in range(j,len(trpost)):
    t.append(trpost[j])   
    wnew,P,M=syn_hebb(False,w[-1],trpre[i-1],trpost[j-1],P,M,t[-1])
    w.append(wnew)

  return t, w

# non hebbian step

ltdinvl_excit = 250.
ltpinvl_excit = 33.33
sighalf_excit = 25.
ltdinvl_inhib = 250.
ltpinvl_inhib = 33.33
sighalf_inhib = 25.



def syn_step(s, isi, excit=True):

  if excit:
    ltpinvl = ltpinvl_excit
    ltdinvl = ltdinvl_excit
    sighalf = sighalf_excit
  else:
    ltpinvl = ltpinvl_inhib
    ltdinvl = ltdinvl_inhib
    sighalf = sighalf_inhib

  if isi < ltpinvl:
    s += 1
  elif isi < ltdinvl:
    s -= 1
  if s > 2 * sighalf:
    s = 2 * sighalf
  elif s < 0:
    s = 0
  return s

class SpikesReader:
    
    def __init__(self, filename, *args):
        self.sort = False
        from struct import unpack
        self.cache_max_len = 100

        self.bincoded = filename.endswith('.spk')
        self.__initweights = {} # initial weights
        
        if len(args) > 0:
          f = open(args[0], 'r')
          line = f.readline()
          while line:
            gid, s = line.split()[:2]
            gid = int(gid)
            s = int(s)
            self.__initweights.update({ gid:s })
            line = f.readline()
          f.close()
          
        if self.bincoded:
          # init for binary format
          self.header = {}
          self.fi = open(filename, 'rb')
          
          offset = unpack('>q', self.fi.read(8))[0]
        
          hlen = offset / 8

          offset += 8

          for j in range(hlen):
            gid, n = unpack('>LL', self.fi.read(8)) # read

            if not self.header.has_key(gid):
              self.header.update({ gid:[(offset, n)] })
            else:
              self.header[gid].append((offset, n)) 

            offset += n * 4
            
        else:
          # init for textual format
          self.fi = open(filename, 'r')

        self.__cache = {}
        self.__old = []

    def retrieve(self, gid):
        # if gid in cache don't retrieve
        if gid not in self.__cache:

            # clean the oldest
            if len(self.__cache) >= self.cache_max_len:
                del self.__cache[self.__old[0]]
                del self.__old[0]

            # read
            t = [ ]

            if self.bincoded:
              # binary format reading code
              for offset, n in self.header[gid]:
                self.fi.seek(offset)
              
                from struct import unpack
                for i in range(n):
                  t.append(unpack('>f', self.fi.read(4))[0])
            else:
              # if not bincoded
              # it's the old textual format
              
              self.fi.seek(1)
              line = self.fi.readline()
              while line:
                tks = line.split()
                if int(tks[1]) == gid:
                  t.append(float(tks[0]))
                line = self.fi.readline()
              if len(t) == 0:
                raise KeyError
            # only for errors...
            if self.sort:
              t = sorted(t)
            self.__old.append(gid)    
            self.__cache.update({ gid:t })

        from copy import copy
        return copy(self.__cache[gid])

    def frequency(self, gid):
        
        t = [ 0. ] + self.retrieve(gid)
        
        fr = [ 0. ]
        for i in range(1, len(t)):
            fr.append(1000. / (t[i] - t[i - 1]))

        return t, fr

    def step(self, gid):
        from mgrs import gid_mgrs_begin
        if gid < gid_mgrs_begin:
            return None
        if gid%2!=0 and params.use_fi_stdp:
          if self.__initweights.has_key(gid):
            wi=self.__initweights[gid] 
          else:
            wi=0
          tpre=[0.]
          if self.header.has_key(gid): tpre += self.retrieve(gid)
          tpost=[0.]
          if self.header.has_key(gid): tpost += self.retrieve(gid+1)
          t,w = hebbian(wi,tpre,tpost)
          return t,w
        else:        
          t = [ 0. ] + self.retrieve(gid)
          try:
            s = [ self.__initweights[gid] ]
          except KeyError:
            s = [ 0 ]
          for i in range(1, len(t)):
            s.append(syn_step(s[-1], t[i] - t[i - 1], excit=(gid % 2 == 0)))

          return t, s

    def close(self):
        self.fi.close()


# read time stop
tstop = None
try:
  from sys import argv
  tstop = float(argv[argv.index('-tstop') + 1])
except:
  pass
# @@@@@@@@@@@@@@

def show(sr, gids, xlabel, ylabel, call, title, ylim, legend=True):
    if len(gids) == 0:
      return
    from bindict import query as descr
    
    import matplotlib.pyplot as plt
    plt.figure()
    
    color = [ 'b', 'g', 'r', 'c', 'm', 'y', 'k' ]
    never_drawed = False
    for i, g in enumerate(gids):
        never_drawed = never_drawed | call(g, i, color[i % len(color)], descr(g)[-1])

    if not never_drawed:
      plt.close()
      return False

    if legend:
      plt.legend().draggable()
    plt.ylabel(ylabel)
    plt.xlabel(xlabel)
    plt.title(title)
    if len(ylim) == 2:
      plt.ylim(ylim)
    if tstop:
      plt.xlim([ 0, tstop ])
    plt.draw()
    return True

def show_raster(sr, gids):
    import matplotlib.pyplot as plt
    def raster(gid, i, col, descr):
        try:
          t = sr.retrieve(gid)
          plt.scatter(t, [ i ] * len(t), s=10, marker='|', label=descr, c=col)
        except KeyError:
          return False
        return True
    return show(sr, gids, 'spike time (ms)', '', raster, 'Spike raster', [ -1, len(gids) + 1 ])
        

def show_freqs(sr, gids):
    import matplotlib.pyplot as plt
    def freq(gid, i, col, descr):
        try:
          t, fr = sr.frequency(gid)
          plt.plot(t, fr, '-' + col + 'o', label=descr)
        except KeyError:
          return False
        return True

    return show(sr, gids, 'spike time (ms)', 'Freq. (Hz)', freq, 'Frequency', [])
            
        

def show_weights(sr, gids):
    from mgrs import gid_mgrs_begin
    
    # not weights
    gids = gids.difference(set(range(gid_mgrs_begin)))

    import matplotlib.pyplot as plt
    
    def step(gid, i, col, descr):
        try:
          t, d = sr.step(gid)
          if gid%2==0:
            maxsig=2*sighalf_excit
          elif params.use_fi_stdp:
            maxsig=wmax
          else:
            maxsig=2*sighalf_inhib

          for i in range(len(d)): d[i] = d[i]/maxsig #* maxsig

          plt.plot(t, d, col + '-', label=descr)
        except KeyError:
          return False
        return True
    return show(sr, gids, 'spike time (ms)', 'Step', step, 'Syn. Steps', [-0.1, 1.1])#[ -1, 2 * max(sighalf_inhib, sighalf_excit) + 1])    
        


# main history
if __name__ == '__main__':
    
    from sys import argv
    i = argv.index('-i')
    

    
    gids = set()
    for sg in argv[argv.index('-gid') + 1:]:
        try:
          gids.add(int(sg))
        except ValueError:
          break

    sr = SpikesReader(argv[i + 1])
      
    # show all
    import matplotlib.pyplot as plt   
    show_freqs(sr, gids)
    show_weights(sr, gids)
    show_raster(sr, gids)
    plt.show()

    

Loading data, please wait...