ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/168591.

3D olfactory bulb: operators (Migliore et al, 2015)

 Download zip file 
Help downloading and running models
Accession:168591
"... Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. ..."
Reference:
1 . Migliore M, Cavarretta F, Marasco A, Tulumello E, Hines ML, Shepherd GM (2015) Synaptic clusters function as odor operators in the olfactory bulb. Proc Natl Acad Sci U S A 112:8499-504 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Sensory processing; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I Na,t; I A; I K; Gaba; Glutamate;
/
figure1eBulb3D
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
fi_stdp.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
.hg_archival.txt
all2all.py *
balance.py *
bindict.py
binsave.py
binspikes.py
BulbSurf.py
catfiles.sh
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
falsegloms.txt
fixnseg.hoc *
g37e1i002.py
gidfunc.py *
Glom.py *
granule.hoc *
granules.py
grow.py
input-odors.txt *
loadbalutil.py *
lpt.py *
m2g_connections.py
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mkdict.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
realSoma.py *
runsim.py
spike2file.hoc *
split.py *
util.py *
vrecord.py
weightsave.py *
                            
TITLE nax
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997
: added sh to account for higher threshold M.Migliore, Apr.2002

NEURON {
    THREADSAFE
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar, sh
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	sh   = 5	(mV)
	gbar = 0.010   	(mho/cm2)	
								
	tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	thi1  = -45	(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact 	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -50 	(mV)		: inact inf slope	
	qinf  = 4 	(mV)		: inact inf slope 

	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v,sh)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v,sh)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm,sh2) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha+sh2,Ra,qa)
	b = trap0(-vm,-tha-sh2,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1+sh2,Rd,qd)
	b = trap0(-vm,-thi2-sh2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf-sh2)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}	

        


Loading data, please wait...