Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)

 Download zip file 
Help downloading and running models
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
1 . Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT (2015) Desynchronization of Fast-Spiking Interneurons Reduces beta-Band Oscillations and Imbalance in Firing in the Dopamine-Depleted Striatum. J Neurosci 35:1149-59 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Axon; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway neuron; Neostriatum medium spiny indirect pathway neuron; Neostriatum fast spiking interneuron;
Channel(s): I Sodium; I Potassium; Kir;
Gap Junctions: Gap junctions;
Receptor(s): D1; D2; GabaA; Glutamate;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synchronization; Detailed Neuronal Models; Parkinson's;
Implementer(s): Damodaran, Sriraman [dsriraman at];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway neuron; Neostriatum medium spiny indirect pathway neuron; D1; D2; GabaA; Glutamate; I Sodium; I Potassium; Kir; Gaba; Glutamate;
Inputwithcorrelation.asv *
Inputwithcorrelation.m *
InputwithCorrelation2.m *
makeDaughterInput.m *
makeDaughterInsignal.m *
makeTrainInput.m *
makeTrainInsignal.m *
poissonMaxTime.m *
writeInput.asv *
writeInput.m *
% Generates input for each cell with Nampa(nSyn)columns and rows proportional to freq*maxTime
% nSyn in the number of synapses
% corr_syn is the correlation between the synapses

function noise = makeDaughterInput(corr_syn, nSyn, freq, maxTime)

	nShare = nSyn - sqrt(corr_syn)*(nSyn-1);
	pShare = 1/nShare;
	motherSpikes = poissonMaxTime(freq*nShare, maxTime);
	len = length(motherSpikes); % # rows of final array

	v = (rand(len, nSyn) < pShare).*repmat(motherSpikes,1,nSyn); %0 indicates don't assign spikes and 1 assigns
	v(find(v == 0)) = inf;
	v = sort(v,1); % sorts each column in ascending order (2nd argument is ascending or descending)
	vlen = 1+max(mod(find(v < inf) - 1, len));
	v(find(v == inf)) = 0;
	noise = v(1:vlen,:);

Loading data, please wait...