Layer 5 Pyramidal Neuron (Shai et al., 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:180373
This work contains a NEURON model for a layer 5 pyramidal neuron (based on Hay et al., 2011) with distributed groups of synapses across the basal and tuft dendrites. The results of that simulation are used to fit a phenomenological model, which is also included in this file.
Reference:
1 . Shai AS, Anastassiou CA, Larkum ME, Koch C (2015) Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput Biol 11:e1004090 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Dendritic Action Potentials; Active Dendrites;
Implementer(s):
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; Glutamate;
/
ShaiEtAl2015
mod
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
                            
:Comment : The transient component of the K current
:Reference : :		Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats:subtypes and gradients,Korngreen and Sakmann, J. Physiology, 2000
:Comment : shifted -10 mv to correct for junction potential
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21

NEURON	{
	SUFFIX K_Tst
	USEION k READ ek WRITE ik
	RANGE gK_Tstbar, gK_Tst, ik
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gK_Tstbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ek	(mV)
	ik	(mA/cm2)
	gK_Tst	(S/cm2)
	mInf
	mTau
	hInf
	hTau
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gK_Tst = gK_Tstbar*(m^4)*h
	ik = gK_Tst*(v-ek)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
		v = v + 10
		mInf =  1/(1 + exp(-(v+0)/19))
		mTau =  (0.34+0.92*exp(-((v+71)/59)^2))/qt
		hInf =  1/(1 + exp(-(v+66)/-10))
		hTau =  (8+49*exp(-((v+73)/23)^2))/qt
		v = v - 10
	UNITSON
}

Loading data, please wait...