Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:181967
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
Reference:
1 . Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule cell; Hippocampus CA1 pyramidal cell; Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell; Hippocampus CA1 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA3 axo-axonic cells;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Brain Rhythms; Storage/recall;
Implementer(s): Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule cell; Hippocampus CA1 pyramidal cell; Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
/
CutsuridisPoirazi2015
Results
Weights
readme.html
ANsyn.mod *
bgka.mod *
borgkm.mod *
burststim.mod
cacumm.mod *
cad.mod
cadiv.mod *
cagk.mod
cagk2.mod
cagk3.mod
cal.mod *
cal1.mod
cal2.mod
calH.mod *
can2.mod *
can3.mod
car.mod *
cat.mod *
cat2.mod
cat3.mod
ccanl.mod *
distr.mod *
gskch.mod *
h.mod *
h2.mod
hha_old.mod *
hha2.mod *
hNa.mod *
hyperde3.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kahp.mod *
KahpM95.mod *
kap.mod *
kaprox.mod
Kaxon.mod *
kca.mod *
kd.mod *
Kdend.mod *
kdr.mod *
kdrca1.mod *
km.mod *
km2.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3n.mod *
Naaxon.mod *
Nadend.mod *
nahh.mod *
Nasoma.mod *
naxn.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
BasketCell.hoc
burst_cell.hoc
CA1AAC.hoc
CA1BC.hoc
CA1BSC.hoc
CA1OLM.hoc
CA1PC.hoc
CA3AAC.hoc
CA3BC.hoc
CA3BSC.hoc
CA3OLM.hoc
CA3PC.hoc
GC.hoc
gui.ses
HC.hoc
MC.hoc
mosinit.hoc
network.hoc
OLM.hoc
ranstream.hoc *
rig.hoc
screenshot.png
stim_cell.hoc
                            
begintemplate HIPPCell

ndend1=3
ndend2=3
ndend3=3
ndend4=3

public  pre_list, connect2target, subsets, is_art, is_connected
public vbc2gc, vmc2gc, vhc2gc, vgc2bc, vbc2bc, vmc2bc, vhc2bc, vgc2mc, vbc2mc, vmc2mc, vhc2mc, vgc2hc, vmc2hc
public soma, hcdend1, hcdend2, hcdend3, hcdend4
create soma, hcdend1[ndend1], hcdend2[ndend2], hcdend3[ndend3], hcdend4[ndend4]
public all, pdend, ddend
objref pre_list
nst=10

objectvar stim[nst]
double stimdur[nst], stimdel[nst], stimamp[nst]
public stim, stimdur, stimamp, stimdel


proc init() {
	pre_list = new List()
	subsets()
	temp()
	synapse()
}

objref all, pdend, ddend

proc subsets() { local i
	objref all, pdend, ddend
	all = new SectionList()
		soma all.append()
		for i=0, 2 hcdend1 [i] all.append()
		for i=0, 2 hcdend2 [i] all.append()
		for i=0, 2 hcdend3 [i] all.append()
		for i=0, 2 hcdend4 [i] all.append()

	pdend  = new SectionList()
		hcdend1 [0] pdend.append()
		hcdend2 [0] pdend.append()
		hcdend3 [0] pdend.append()
		hcdend4 [0] pdend.append()

	ddend  = new SectionList()
		for i=1, 2 hcdend1 [i] ddend.append()
		for i=1, 2 hcdend2 [i] ddend.append()
		for i=1, 2 hcdend3 [i] ddend.append()
		for i=1, 2 hcdend4 [i] ddend.append()
}

proc temp() {

	soma {nseg=1 L=20 diam=10} // changed L & diam
		
	hcdend1 [0] {nseg=1 L=75 diam=3}
	hcdend1 [1] {nseg=1 L=75 diam=2}
	hcdend1 [2] {nseg=1 L=75 diam=1}

	hcdend2 [0] {nseg=1 L=75 diam=3}
	hcdend2 [1] {nseg=1 L=75 diam=2}
	hcdend2 [2] {nseg=1 L=75 diam=1}
 		 
	hcdend3 [0] {nseg=1 L=50 diam=3}
	hcdend3 [1] {nseg=1 L=50 diam=2}
	hcdend3 [2] {nseg=1 L=50 diam=1}
	
	hcdend4 [0] {nseg=1 L=50 diam=3}
	hcdend4 [1] {nseg=1 L=50 diam=2}
	hcdend4 [2] {nseg=1 L=50 diam=1}	

    
	forall {
		insert ccanl
		   catau_ccanl = 10
		   caiinf_ccanl = 5.e-6
		
		insert borgka
		   gkabar_borgka=0.0008
		
		insert nca  // HAV-N- Ca channel
		   gncabar_nca=0.0  //0005  check to modify- original 0.004
		
		insert lca
		   glcabar_lca=0.0015
		
		insert gskch
		   gskbar_gskch=0.003
		
		insert cagk
		   gkbar_cagk=0.003
		
		insert hyperde3
		   ghyfbar_hyperde3=0.000015
		   ghysbar_hyperde3=0.000015
	}

	soma {
		insert ichan2  //ildikos ichan
		   gnatbar_ichan2=0.2  //original 0.030 to .055 
		   gkfbar_ichan2=0.006  //original 0.015
		   gl_ichan2 = 0.000036
		   cm=1.1
	} 

	forsec pdend {
		insert ichan2
		   gnatbar_ichan2=0.2  //original 0.015
		   gkfbar_ichan2=0.006
		   gl_ichan2 = 0.000036
		   cm=1.1
	}
		
	forsec ddend {
		insert ichan2
		   gnatbar_ichan2=0.0
		   gkfbar_ichan2=0.00
		   gl_ichan2 = 0.000036
		   cm=1.1
	}

	forall {
		Ra=100
	}
	forall {
		enat = 55 
		ekf = -90 
		ek=-90  
		esk=-90 
		elca=130
		el_ichan2 =-70.45	
		ehyf=-40 
		ehys=-40
		cao_ccanl=2 
	}  // make catau slower70e-3 	cao=2 cai=50.e-6 


	connect hcdend1[0](0), soma(1)
	connect hcdend2[0](0), soma(1)
	connect hcdend3[0](0), soma(0)
	connect hcdend4[0](0), soma(0)
	for i=1,2 {
		connect hcdend1[i](0), hcdend1[i-1](1)
	}
	for i=1,2 {
		connect hcdend2[i](0), hcdend2[i-1](1)
	}
	for i=1,2 {
		connect hcdend3[i](0), hcdend3[i-1](1)
	}
	for i=1,2 {
		connect hcdend4[i](0), hcdend4[i-1](1)
	}


//for i=0,0 {
//stimdel[i]=500
//stimdur[i]=500
//stimamp[i]=0.1

/* 0.4 stim when we want the cell to fire with regular spikes */

//soma stim[i] = new IClamp(0.5)
//stim.del[i]=stimdel[i]
//stim.dur[i]=stimdur[i]
//stim.amp[i]=stimamp[i]
//}
}

objref syn_  
proc synapse() {

	hcdend1 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend similar to GC>BC		0
	syn_.tau1 = .3	syn_.tau2 = .6	syn_.e = 0
	pre_list.append(syn_)

	hcdend2 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend similar to GC>BC		1
	syn_.tau1 = .3	syn_.tau2 = .6	syn_.e = 0
	pre_list.append(syn_)

	hcdend3 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend similar to GC>BC		2
	syn_.tau1 = .3 syn_.tau2 = .6	syn_.e = 0
	pre_list.append(syn_)

	hcdend4 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend similar to GC>BC		3
	syn_.tau1 = .3	syn_.tau2 = .6	syn_.e = 0
	pre_list.append(syn_)

	hcdend1 [1] syn_ = new Exp2Syn(0.5)	//MC(AMPA) syn_ to mid dend similar to CA3>int Aaron	4
	syn_.tau1 = .9	syn_.tau2 = 3.6	syn_.e = 0 //*** Assumed data at physio temp
	pre_list.append(syn_)

	hcdend2 [1] syn_ = new Exp2Syn(0.5)	//MC(AMPA) syn_ to mid dend similar to CA3>int Aaron	5
	syn_.tau1 = 0.9	syn_.tau2 = 3.6	syn_.e = 0 //*** Assumed data at physio temp
	pre_list.append(syn_)

	hcdend3 [1] syn_ = new Exp2Syn(0.5)	//MC(AMPA) syn_ to mid dend similar to CA3>int Aaron	6
	syn_.tau1 = 0.9	syn_.tau2 = 3.6	syn_.e = 0  //*** Assumed data at physio temp
	pre_list.append(syn_)

	hcdend4 [1] syn_ = new Exp2Syn(0.5)	//MC(AMPA) syn_ to mid dend similar to CA3>int Aaron	7
	syn_.tau1 = 0.9		syn_.tau2 = 3.6 	syn_.e = 0  //*** Assumed data at physio temp
	pre_list.append(syn_)

	soma syn_ = new Exp2Syn(0.5)		// GABA-A septum					8
    	syn_.tau1 = 1
    	syn_.tau2 = 8
    	syn_.e = -75
    	pre_list.append(syn_)	

	
// Total of 8 synapses 	0-3 GC; 	4-7 MC;		8 septum	
}

obfunc connect2target() { localobj nc //$o1 target point process, optional $o2 returned NetCon
  	soma nc = new NetCon(&v(1), $o1)
  	nc.threshold = -10
  	if (numarg() == 2) { $o2 = nc } // for backward compatibility
  	return nc
}

func is_art()  { return 0 }


endtemplate HIPPCell

Loading data, please wait...