Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:181967
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
Reference:
1 . Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule cell; Hippocampus CA1 pyramidal cell; Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell; Hippocampus CA1 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA3 axo-axonic cells;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Brain Rhythms; Storage/recall;
Implementer(s): Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule cell; Hippocampus CA1 pyramidal cell; Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
/
CutsuridisPoirazi2015
Results
Weights
readme.html
ANsyn.mod *
bgka.mod *
borgkm.mod *
burststim.mod
cacumm.mod *
cad.mod
cadiv.mod *
cagk.mod
cagk2.mod
cagk3.mod
cal.mod *
cal1.mod
cal2.mod
calH.mod *
can2.mod *
can3.mod
car.mod *
cat.mod *
cat2.mod
cat3.mod
ccanl.mod *
distr.mod *
gskch.mod *
h.mod *
h2.mod
hha_old.mod *
hha2.mod *
hNa.mod *
hyperde3.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kahp.mod *
KahpM95.mod *
kap.mod *
kaprox.mod
Kaxon.mod *
kca.mod *
kd.mod *
Kdend.mod *
kdr.mod *
kdrca1.mod *
km.mod *
km2.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3n.mod *
Naaxon.mod *
Nadend.mod *
nahh.mod *
Nasoma.mod *
naxn.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
BasketCell.hoc
burst_cell.hoc
CA1AAC.hoc
CA1BC.hoc
CA1BSC.hoc
CA1OLM.hoc
CA1PC.hoc
CA3AAC.hoc
CA3BC.hoc
CA3BSC.hoc
CA3OLM.hoc
CA3PC.hoc
GC.hoc
gui.ses
HC.hoc
MC.hoc
mosinit.hoc
network.hoc
OLM.hoc
ranstream.hoc *
rig.hoc
screenshot.png
stim_cell.hoc
                            
TITLE CaGk2
: Calcium activated K channel.
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


NEURON {
	SUFFIX cagk2
	USEION ca READ cai
	USEION k READ ek WRITE ik
	RANGE gbar,gkca,ik
	GLOBAL oinf, tau
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {
	celsius		(degC)
	v		(mV)
	gbar=.01	(mho/cm2)	: Maximum Permeability
	cai 		(mM)
	ek		(mV)

	d1 = .84
	d2 = 1.
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	abar = .28	(/ms)
	bbar = .48	(/ms)
        st=1            (1)
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	tau		(ms)
        gkca          (mho/cm2)
}

INITIAL {
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkca = gbar*o^st
	ik = gkca*(v - ek)
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	rate(v, cai)
	o' = (oinf - o)/tau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	tau = 1/(a + bet(v, c))
	oinf = a*tau
}


Loading data, please wait...