Application of a common kinetic formalism for synaptic models (Destexhe et al 1994)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:18198
Application to AMPA, NMDA, GABAA, and GABAB receptors is given in a book chapter. The reference paper synthesizes a comprehensive general description of synaptic transmission with Markov kinetic models. This framework is applicable to modeling ion channels, synaptic release, and all receptors. Please see the references for more details. A simple introduction to this method is given in a seperate paper Destexhe et al Neural Comput 6:14-18 , 1994). More information and papers at http://cns.iaf.cnrs-gif.fr/Main.html and through email: Destexhe@iaf.cnrs-gif.fr
References:
1 . Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [PubMed]
2 . Destexhe A, Mainen Z, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding Neural Comput 6:14-18
3 . Destexhe A, Mainen Z, Sejnowski T (1995) Fast Kinetic Models for Simulating AMPA, NMDA, GABAA and GABAB Receptors The Neurobiology of Computation, Bower J, ed. pp.9
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Electrogenic pump;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s): Nicotinic; M1; M3; M4; M5; M2; mGluR1; mGluR2; mGluR3; mGluR4; mGluR5; mGluR6; mGluR7; mGluR8; Alpha; Alpha1; Alpha2; Beta; D1; D2; 5-HT1; 5-HT2; 5-HT4; H2; GabaA; GabaB; Muscarinic; AMPA; NMDA; mGluR; 5-HT3; Kainate; Monoamine Receptors; Glutamate; Gaba; Adrenergic; Serotonin; Histamine; Cholinergic Receptors; Amino Acid Receptors; Sensory Receptors; Olfactory Receptors; Opsins; Dopaminergic Receptor; Glycine; Gaseous Receptors; NO; Peptide Receptors; Dynorphin; H1; Ion Receptors; Zn2+; CO;
Gene(s):
Transmitter(s): Acetylcholine; Glycine; Dopamine; Zn2+; NO; CO; Dynorphin; Ephinephrine; Norephinephrine; Amino Acids; Gaba; Glutamate; Monoamines; Peptides; Ions; Gases; Histamine; Serotonin;
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Markov-type model;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr]; Mainen, Zach [Mainen at cshl.edu];
Search NeuronDB for information about:  Nicotinic; M1; M3; M4; M5; M2; mGluR1; mGluR2; mGluR3; mGluR4; mGluR5; mGluR6; mGluR7; mGluR8; Alpha; Alpha1; Alpha2; Beta; D1; D2; 5-HT1; 5-HT2; 5-HT4; H2; GabaA; GabaB; Muscarinic; AMPA; NMDA; mGluR; 5-HT3; Kainate; Monoamine Receptors; Glutamate; Gaba; Adrenergic; Serotonin; Histamine; Cholinergic Receptors; Amino Acid Receptors; Sensory Receptors; Olfactory Receptors; Opsins; Dopaminergic Receptor; Glycine; Gaseous Receptors; NO; Peptide Receptors; Dynorphin; H1; Ion Receptors; Zn2+; CO; Acetylcholine; Glycine; Dopamine; Zn2+; NO; CO; Dynorphin; Ephinephrine; Norephinephrine; Amino Acids; Gaba; Glutamate; Monoamines; Peptides; Ions; Gases; Histamine; Serotonin;
/
SYN_NEW
README
ampa.mod *
ampa5.mod *
caL3d.mod *
gabaa.mod *
gabaa5.mod *
gabab.mod *
gabab3.mod
HH2.mod *
nmda.mod *
nmda5.mod *
release.mod
ampa.hoc
ampa5.hoc
gabaa.hoc
gabaa5.hoc
gabab.hoc
gabab3.hoc
mosinit.hoc *
nmda.hoc
nmda5.hoc
release.hoc
rundemo.hoc
                            
COMMENT

High threshold Ca2+ channel

2-state kinetics with sigmoidal voltage-dependence

  C<->O

Goldman-Hodgkin-Katz equations

     # MODEL
    |   MODEL AUTHOR  : D.A. McCormick & J. Huguenard
    |   MODEL DATE    : 1992
    |   MODEL REF     : A model of the electrophysiological properties of 
thalamocortical relay neurons. J Neurophysiol, 1992 Oct, 68(4):1384-400.
 
    # EXPERIMENT
    |   EXP AUTHOR    : Kay AR; Wong RK
    |   EXP DATE      : 1987
    |   EXP REF       : Journal of Physiology, 1987 Nov, 392:603-16.
    |   ANIMAL        : guinea-pig
    |   BRAIN REGION  : hippocampus
    |   CELL TYPE     : Ca1 pyramidal
    |   TECHNIQUE     : slices, whole-cell
    |   RECORDING METHOD  : voltage-clamp
    |   TEMPERATURE   : 20-22
 
Reference:

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
   excitable membranes, synaptic transmission and neuromodulation using a 
   common kinetic formalism, Journal of Computational Neuroscience 1: 
   195-230, 1994.

  (electronic copy available at http://cns.iaf.cnrs-gif.fr)


ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX caL
	USEION ca READ cai, cao WRITE ica
	RANGE O, C, I
	RANGE a,b
	GLOBAL Ra, Rb, q, th, p
	GLOBAL q10, temp, tadj
}

UNITS {
	F = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	(mM) = (milli/liter)
} 

PARAMETER {
	p    = 0.2e-3  	(cm/s)		: max permeability
	v 		(mV)

	th   = 5	(mV)		: v 1/2 for on/off
	q   = 13	(mV)		: voltage dependence

	: max rates

	Ra   = 1.6	(/ms)		: open (v)
	Rb   = 0.2	(/ms)		: close (v)

	celsius		(degC)
	temp = 22	(degC)		: original temp
	q10  = 3			: temperature sensitivity
} 


ASSIGNED {
	ica 		(mA/cm2)
	cao		(mM)
	cai		(mM)
	a (/ms)	b (/ms)
	tadj
}
 

STATE { C O }

INITIAL { 
	C = 1 
}


BREAKPOINT {
	rates(v)
	SOLVE kstates METHOD sparse
	ica = O * p * ghk(v,cai,cao)
} 


KINETIC kstates {
	~ C <-> O 	(a,b)	
	CONSERVE C+O = 1
}	
	
PROCEDURE rates(v(mV)) {
	TABLE a, b
	DEPEND Ra, Rb, th, celsius, temp, q10
	FROM -100 TO 100 WITH 200

	tadj = q10 ^ ((celsius - temp)/10 (degC))

	a = Ra / (1 + exp(-(v-th)/q)) * tadj
	b = Rb / (1 + exp((v-th)/q)) * tadj
}

: Special gear for calculating the Ca2+ reversal potential
: via Goldman-Hodgkin-Katz eqn.
: [Ca2+]o "cao" and [Ca2+]i "cai" are assumed to be set elsewhere


FUNCTION ghk(v(mV), ci(mM), co(mM)) (0.001 coul/cm3) {
	LOCAL z

	z = (0.001)*2*F*v/(R*(celsius+273.15))
	ghk = (.001)*2*F*(ci*efun(-z) - co*efun(z))
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}





Loading data, please wait...