3D-printer visualization of NEURON models (McDougal and Shepherd, 2015)

 Download zip file 
Help downloading and running models
Accession:182785
"... We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). ..."
Reference:
1 . McDougal RA, Shepherd GM (2015) 3D-printer visualization of neuron models. Front Neuroinform 9:18 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Methods;
Implementer(s): McDougal, Robert [robert.mcdougal at yale.edu];
  
/
3d-printable-neurons
geometry3d
readme.html
demo.py
prepare_3dprintable.py
                            

McDougal RA, Shepherd GM (2015) 3D-printer visualization of neuron models. Front Neuroinform 9:18[PubMed]

References and models cited by this paper

References and models that cite this paper

Al-Kofahi KA, Lasek S, Szarowski DH, Pace CJ, Nagy G, Turner JN, Roysam B (2002) Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Trans Inf Technol Biomed 6:171-87 [PubMed]

Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27:9247-51 [Journal] [PubMed]

Baseer N, Polgár E, Watanabe M, Furuta T, Kaneko T, Todd AJ (2012) Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J Neurosci 32:11854-63 [Journal] [PubMed]

   [30 reconstructed morphologies on NeuroMorpho.Org]

Brunjes PC, Kenerson MC (2010) The anterior olfactory nucleus: quantitative study of dendritic morphology. J Comp Neurol 518:1603-16 [Journal] [PubMed]

   [282 reconstructed morphologies on NeuroMorpho.Org]

Cannon RC, Turner DA, Pyapali GK, Wheal HV (1998) An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods 84:49-54 [PubMed]

   [38 reconstructed morphologies on NeuroMorpho.Org]

Carey R,Bell G () The Annotated VRML 2.0 Reference Manual

Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987) Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J Comp Neurol 255:68-81 [PubMed]

   [6 reconstructed morphologies on NeuroMorpho.Org]

Cuntz H, Forstner F, Borst A, Hausser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol [PubMed]

Djurisic M, Popovic M, Carnevale N, Zecevic D (2008) Functional Structure of the Mitral Cell Dendritic Tuft in the Rat Olfactory Bulb J. Neurosci. 28:4057-4068 [Journal] [PubMed]

   Functional structure of mitral cell dendritic tuft (Djurisic et al. 2008) [Model]

Donohue DE, Ascoli GA (2008) A comparative computer simulation of dendritic morphology. PLoS Comput Biol 4:e1000089 [Journal] [PubMed]

   A comparative computer simulation of dendritic morphology (Donohue and Ascoli 2008) [Model]

Glaser JR, Glaser EM (1990) Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. Comput Med Imaging Graph 14:307-17 [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, S (2012) Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 32:7970-85 [PubMed]

Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17-45 [PubMed]

   [47 reconstructed morphologies on NeuroMorpho.Org]

Kaynig V, Vazquez-Reina A, Knowles-Barley S, Roberts M, Jones TR, Kasthuri N, Miller E, Licht (2015) Large-scale automatic reconstruction of neuronal processes from electron microscopy images. Med Image Anal 22:77-88 [Journal] [PubMed]

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008) [Model]

Kruth JP,Wang X,Laoui T,Froyen L (2003) Lasers and materials in selective laser sintering Assembly Autom 23:357-371

Markaki M, Orphanoudakis S, Poirazi P (2005) Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process Neurocomputing 65-66:305-314 [Journal]

   Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005) [Model]

McDougal RA, Hines ML, Lytton WW (2013) Water-tight membranes from neuronal morphology files Journal of Neuroscience Methods 220(2):167-78 [Journal] [PubMed]

   Constructed Tessellated Neuronal Geometries (CTNG) (McDougal et al. 2013) [Model]

Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb Front. Comput. Neurosci. 8:50 [Journal]

   3D model of the olfactory bulb (Migliore et al. 2014) [Model]

Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G, Miller P (1999) Organization of heterogeneous scientific data using the EAV/CR representation. J Am Med Inform Assoc 6:478-93 [PubMed]

Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2:215-28, 228.e1-3 [PubMed]

   [28 reconstructed morphologies on NeuroMorpho.Org]

Ramachandran P,Varoquaux G (2011) Mayavi: 3D visualization of scientific data Comput Sci Eng 13:40-51

Tukker JJ, Lasztóczi B, Katona L, Roberts JD, Pissadaki EK, Dalezios Y, Márton L, Zhang L, Kl (2013) Distinct dendritic arborization and in vivo firing patterns of parvalbumin-expressing basket cells in the hippocampal area CA3. J Neurosci 33:6809-25 [PubMed]

   [7 reconstructed morphologies on NeuroMorpho.Org]

Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395-410 [PubMed]

   [204 reconstructed morphologies on NeuroMorpho.Org]

Wolf S, Grein S, Queisser G (2013) Employing NeuGen 2.0 to automatically generate realistic morphologies of hippocampal neurons and neural networks in 3D. Neuroinformatics 11:137-48 [PubMed]

Zubler F, Douglas R (2009) A framework for modeling the growth and development of neurons and networks. Front Comput Neurosci 3:25-74 [PubMed]

Chen W, De Schutter E (2017) Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers Front. Neuroinform. 11:13 [Journal]

   Parallel STEPS: Large scale stochastic spatial reaction-diffusion simulat. (Chen & De Schutter 2017) [Model]

(29 refs)