CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)

 Download zip file   Auto-launch 
Help downloading and running models
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
1 . Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I K; Ca pump;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Ion Channel Kinetics; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Synaptic Integration; Calcium dynamics;
Implementer(s): Cembrowski, Mark S [cembrowskim at]; Hsu, Ching-Lung [hsuc at];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; NMDA; I Na,t; I L high threshold; I K; Ca pump; Glutamate;
Loading data, please wait...