Rhesus Monkey Young and Aged L3 PFC Pyramidal Neurons (Rumbell et al. 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:184497
A stereotypical pyramidal neuron morphology with ion channel parameter combinations that reproduce firing patterns of one young and one aged rhesus monkey L3 PFC pyramidal neurons. Parameters were found through an automated optimization method.
Reference:
1 . Rumbell TH, Draguljic D, Yadav A, Hof PR, Luebke JI, Weaver CM (2016) Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons. J Comput Neurosci 41:65-90 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I_AHP; I Cl, leak;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Parameter Fitting; Detailed Neuronal Models; Aging/Alzheimer`s;
Implementer(s):
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,p; I Na,t; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I_AHP; I Cl, leak;
TITLE Potasium C type current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
}
 
NEURON { 
	SUFFIX kc
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE  gbar, ik
}

PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v ek 		(mV)  
	cai		(1)
	taumod = 1.0
	vshift = 0
} 

ASSIGNED { 
	ik 		(mA/cm2) 
	alpha beta	(/ms)
}
 
STATE {
	m
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	if( 0.004 * cai < 1 ) {
		ik = gbar * m * 0.004 * cai * ( v - ek ) 
	}else{
		ik = gbar * m * ( v - ek ) 
	}
}
 
INITIAL { 
	settables(v) 
	m = alpha / ( alpha + beta )
	m = 0
}
 
DERIVATIVE states { 
	settables(v) 
	m' = alpha * ( 1 - m ) - beta * m 
}

UNITSOFF 

PROCEDURE settables(v) { 
	TABLE alpha, beta FROM -120 TO 40 WITH 641

	if( v < -10.0 ) {
		: alpha = 2 / 37.95 * ( exp( ( v + 50 ) / 11 - ( v + 53.5 ) / 27 ) )
		alpha = ( 2 / 37.95 * ( exp( ( ( v + vshift ) + 50 ) / 11 - ( ( v + vshift ) + 53.5 ) / 27 ) ) ) * taumod

		: Note that there is typo in the paper - missing minus sign in the front of 'v'
		: beta  = 2 * exp( ( - v - 53.5 ) / 27 ) - alpha
		beta  = ( 2 * exp( ( - ( v + vshift ) - 53.5 ) / 27 ) - alpha ) * taumod
	}else{
		: alpha = 2 * exp( ( - v - 53.5 ) / 27 )
		alpha = ( 2 * exp( ( - ( v + vshift ) - 53.5 ) / 27 ) ) * taumod
		beta  = 0
	}
}

UNITSON

Loading data, please wait...