AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015)

 Download zip file 
Help downloading and running models
Accession:185332
Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. This is a realistic conductance-based model that was constructed using the detailed morphology of a single typical accessory olfactory bulb (AOB) mitral cell for which the electrophysiological properties were characterized.
Reference:
1 . Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S (2015) Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells PLOS Biology 13(12):e1002319
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb (accessory) mitral cell;
Channel(s): I Na,t; I K; I K,leak; I CAN; I Sodium; I Calcium; I Potassium; Na/Ca exchanger; Na/K pump; I Na, leak; Ca pump;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Activity Patterns; Parameter Fitting; Working memory; Persistent activity; Olfaction;
Implementer(s): Zylbertal, Asaph [asaph.zylbertal at mail.huji.ac.il];
Search NeuronDB for information about:  I Na,t; I K; I K,leak; I CAN; I Sodium; I Calcium; I Potassium; Na/Ca exchanger; Na/K pump; I Na, leak; Ca pump;
Loading data, please wait...