Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)

 Download zip file 
Help downloading and running models
Accession:185858
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
Reference:
1 . Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex Neuroscience 316:344-366 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Molecular Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex layer 2-3 interneuron; Neocortex layer 5 interneuron; Neocortex layer 6a interneuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump;
Gap Junctions:
Receptor(s): mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Ion Channel Kinetics; Oscillations; Spatio-temporal Activity Patterns; Signaling pathways; Working memory; Attractor Neural Network; Calcium dynamics; Laminar Connectivity; G-protein coupled; Rebound firing; Brain Rhythms; Dendritic Bistability; Reaction-diffusion; Beta oscillations; Persistent activity; Multiscale;
Implementer(s): Neymotin, Sam [samn at neurosim.downstate.edu]; McDougal, Robert [robert.mcdougal at yale.edu];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 interneuron basket PV cell; mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump; Gaba; Glutamate;
/
CaHDemo
readme.html
cagk.mod
cal.mod *
calts.mod *
can.mod *
cat.mod *
gabab.mod
IC.mod *
icalts.mod *
Ih.mod
ihlts.mod *
IKM.mod *
kap.mod
kcalts.mod *
kdmc.mod
kdr.mod
kdrbwb.mod
km.mod *
mglur.mod *
misc.mod
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod
nafbwb.mod
nax.mod
vecst.mod *
aux_fun.inc *
conf.py
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
ghk.inc *
grvec.hoc
init.hoc
labels.hoc
labels.py *
local.hoc *
misc.h
mpisim.py
netcfg.cfg
nqs.hoc
nqs.py
nrnoc.hoc *
onepyr.cfg
onepyr.py
pyinit.py *
python.hoc *
pywrap.hoc *
screenshot.png
screenshot1.png
simctrl.hoc *
simdat.py
syncode.hoc *
xgetargs.hoc *
                            
TITLE Ca-dependent potassium current
:
:   Ca++ dependent K+ current IC responsible for 
:   action potentials AHP's
:   Differential equations
:
:   Model of Yamada, Koch & Adams, in: Methods in Neuronal Modeling,
:   Ed. by Koch & Segev, MIT press, 1989.
:
:   This current models the "fast" IK[Ca]:
:      - potassium current
:      - activated by intracellular calcium
:      - VOLTAGE DEPENDENT
:
:   Written by Alain Destexhe, Salk Institute, Sept 18, 1992
:
: should be considered 'BK' - fast, big conductance

NEURON {
	SUFFIX ikc
	USEION k READ ek WRITE ik
	USEION ca READ cai
        RANGE gkbar
	RANGE m_inf, tau_m
        RANGE taumin
        GLOBAL ascale,bscale,vfctr
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

PARAMETER {
	v		(mV)
        celsius         (degC)
	ek		(mV)
        cai             (mM)
	gkbar	= .003	(mho/cm2)	: taken from 
        taumin = 0.1
        ascale = 250.0
        bscale = 0.1
        vfctr = 24.0
}

STATE {
	m
}

INITIAL {
	evaluate_fct(v,cai)
	m = m_inf
}

ASSIGNED {
	ik	(mA/cm2)
	m_inf
	tau_m	(ms)
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik = gkbar * m * (v - ek)
}

DERIVATIVE states { 
	evaluate_fct(v,cai)
	m' = (m_inf - m) / tau_m
}

UNITSOFF
PROCEDURE evaluate_fct(v(mV),cai(mM)) {  LOCAL a,b,tadj
:
:  activation kinetics of Yamada et al were at 22 deg. C
:  transformation to 36 deg assuming Q10=3
:
	tadj = 3 ^ ((celsius-22.0)/10)

	a = ascale * cai * exp(v/vfctr)
	b = bscale * exp(-v/vfctr)

	tau_m = 1.0 / (a + b) / tadj
        if(tau_m < taumin){ tau_m = taumin }
	m_inf = a / (a + b)
}
UNITSON

Loading data, please wait...