Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:187604
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
Reference:
1 . Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [PubMed]
2 . Bezaire M, Raikov I, Burk K, Armstrong C, Soltesz I (2016) SimTracker tool and code template to design, manage and analyze neural network model simulations in parallel NEURON eLife, in press
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 interneuron oriens alveus; Hippocampus CA1 basket cell; Hippocampus CA1 stratum radiatum interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 PV+ fast-firing interneuron;
Channel(s): I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; GabaB; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; NEURON (web link to model);
Model Concept(s): Oscillations; Methods; Connectivity matrix; Laminar Connectivity; Gamma oscillations;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Raikov, Ivan [ivan.g.raikov at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; Hippocampus CA1 interneuron oriens alveus; GabaA; GabaB; Glutamate; Gaba; I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium; Gaba; Glutamate;
This is the README for the neuron files (esp. ca1.hoc) associated with
the paper:

Bezaire et al 

For detailed information, view Model_Manual.pdf
Produced by: marianne.case@uci.edu 2010

PURPOSE OF CODE:
This code creates a scalable network of cells and runs a simulation.
It models the rat CA1 using several cell types and can include
characteristics of an epileptic network (sprouting and cell death).

INSTRUCTIONS FOR RUNNING THE PROGRAM
>SETUP:
1. Ensure neuron is installed on the head node and has its directory added to PATH
2. Ensure that mpich2 is installed on the head node and has its directory added to PATH
3. Compile the mod files into the directory from which the model program will be run
	a. To compile all mod files in the directory, simply enter:
		$ nrnivmodl
	b. To compile specific mod files, enter them after the command:
		$ nrnivmodl ccanl nca tca

>RUNNING:
1. Edit the parameter input files (listed below) as necessary
2. Turn on mpd:
		$ mpdboot	
	or alternatively:
		$ mpd &
3. Call the program with the number of available hosts where the '2' is:
		$ mpiexec -n 2 $NEURONHOME/nrn/x86_64/bin/nrniv -nobanner -nogui -mpi ca1.hoc	
4. When finished using mpi, shut down mpd:
		$ mpdallexit

FILE ORGANIZATION:
root folder:
	- ca1.hoc (main hoc file) and all mechanism files
cells folder:
	- individual files defining each cell type
	- individual files defining the axonal distribution of each cell type
connections folder:
	- individual files specifing the probability, strength, and delay of each connection type
setupfiles folder:
	- default parameter definitions file
	- cell numbers and soma layers
	- other files needed by ca1.hoc to run the model
stimulation folder:
	- individual files defining each stimulation protocol
results folder:
	- contains result folders for each run
tools folder:
	- contains MATLAB and NEURON scripts to organize results and generate figures
jobscripts folder:
	- contains scripts generated by you to submit a model run to a batch queue. This folder can be moved to another location.
x86_64 folder:
	- automatically generated when mechanisms are compiled, stores compiled mechanisms

FILES IN RESULTS FOLDER
spikeraster.dat
connections.dat
numcons.dat
position.dat
celltype.dat
runtimes.dat
ranseeds.dat
runreceipt.txt
lowindex.hoc

VIEWING THE RESULTS
In the tools folder, there are several MATLAB scripts useful for viewing the model characteristics or simulation results:
- Run Organizer
- AutoRig

USING MERCURIAL
Mercurial is a code versioning program; this model is meant to be used with Mercurial.
To get started:
1. Download and install Mercurial from http://mercurial.selenic.com/
2. At the command prompt, cd to the root folder of this model
3. To create a Mercurial repository of the model, enter:
	$ hg init
4. To commit changes to the repository, enter:
	$ hg commit -m "comment about this code version"
5. To check which code version you are using:
	$ hg parent
6. To list all the code versions in the repository:
	$ hg log
7. To switch to a different code version (ex: version 2):
	$ hg update -C -r 2
8. To switch to back to the most recent version:
	$ hg update -C -r tip
9. To check the changes made since you last commit:
	$ hg status
10. To have Mercurial start tracking a file:
	$ hg add myfile.txt
11. To have Mercurial remove and stop tracking a file:
	$ hg remove myfile.txt
12. To have Mercurial move and keep tracking a file:
	$ hg mv original.txt target.txt
13. For more extensive instructions, see:
	http://mercurial.selenic.com/guide/

SPECIFYING PARAMETER VALUES AT EXECUTION TIME
Add the '-c' option, followed by the equation to set the parameter in quotes:
	$ mpiexec -n 2 $NEURONHOME/nrn/x86_64/bin/nrniv -nobanner -nogui -mpi -c "mytstop=100" ca1.hoc	
For strings, include another '-c' option to define the string and enclose the string value in '\"':
	$ mpiexec -n 2 $NEURONHOME/nrn/x86_64/bin/nrniv -nobanner -nogui -mpi -c "strdef RunName" "RunName=\"myrun\"" ca1.hoc	

CODE OUTLINE:
I.  LOAD LIBRARIES & PARAMETERS
	1. Load the main nrngui.hoc
	2. Load the template for the parallelnetmanager class (used to parallelize the code)
	3. Load the template for the randomstream class (used to generate random number streams)
	4. Load the template for CellCategoryInfo class, which generates 1 object per cell type
		to store celltype specific data and enable the removal of all hard-coded cell type refs
		
II. SET MODEL SIZE, CELL DEFINITIONS
	1. Load some parameters from file
	2. Set more static parameters directly in this code
	3. Load celltype specific data
		a. For each cell type specified in the cells2include.hoc file
			i.  Read in the cell name, # cells, layer specifier, stim input specifier
			ii. Compute the start and end of the gid # range
			iii.Create an object of the CellCategoryInfo class and store the data from i & ii
			iv. Load the hoc file containing the celltype class template
		b. Load the hoc file containing the perforant path stimulation template
	4. Kill off a % of cells (specified by sclerosis factor) that specified as being in the hilar layer
	5. Recalculate the gid ranges for each cell type, now that the number of cells for some types has decreased
	6. Calculate the total number of cells including and excluding the perforant path stimulation cell(s)
	
III.SET UP PARALLEL CAPABILITY
	1. Set up a ParallelNetManager object
	2. Create a ParallelContext
	3. Call the round robin command, which distributes all cells among all processors in a round
	4. Define an iterator that can iterate over all the cells in a given range that are owned by
		the host that called the iterator
		
IV. CREATE, UNIQUELY ID, AND POSITION CELLS
	1. For each cell type defined in cells2include.hoc:
		a. For each host in the cluster:
			i.  Check that the gid is owned by the host (and it should be, because we are using the iterator)
			ii. Create a cell of that cell type and reference it in a list contained by that cellType object
			iii.Add the cell to the 'cells' list (this is something proposed by NEURON developers,
				but we don't use explicitly use it in the code)
			iv. Create an empty connection for the cell to use as a spike detector
			v.  Associate the cell with its gid and with the spike generation location (empty connection)
			vi. Calculate and store the cell's position using an algorithm based on gid, cell type,
				# of cells of that type, # available 'bins'

V.	CONNECT THE CELLS AND CONNECT THE PERFORANT PATH TO SOME CELLS
	1. For each cell type x cell type combination, load in the connection properties
		(probability, weight, delay # synapses to choose from)
		a. If the probability of connection is not 0, for a given cell type x cell type combination:
		b. Iterate through each (potential) post-synaptic cell of that type that exists on the host executing this code
			i.  Iterate through each (potential) pre-synaptic cell of that type (regardless of where it lives)
			ii. Algorithmically obtain the positions of the pre- and post- cells
			iii.Calculate the distance between the cells and obtain a probability factor based on the distance and
				distribution of axon length for the pre-synaptic cell
			iv. Multiply the distribution number by the probability of those two types of cells connecting
				and by a connection factor that was artificially added to ensure the proper amount of connectivity
				between cells in a network of a given size
			v.  Pick a random number between 0 and 1 and check if it is less than this product.
			vi. If the above statement is true, make a connection between the cells with the given weight and delay
				and add the connection to a list 'nclist' (this is something proposed by NEURON developers)
	2. For each perforant path stimulator cell:
		a. Connect the cell with the middle 10% of granule cells in the network
		b. Connect the cell with the middle 10% of basket cells in the network
		c. Make 10 connections to the middle 10% of mossy cells in the network (note that with small network sizes,
			a given cell may receive more than 1 connection)
			
VI.	INITIALIZE AND RUN NETWORK, OUTPUT RESULT FILES
	1. Initialize the network using parameters specified in part I.
	2. Run a low resolution 'pre-simulation' to allow cells to 'settle' and all components to reach steady state
	3. Set the program to records all spikes of all cells on the host executing this code
	4. Run the simulation for the time specified in part I, at the resolution specified in part I.
	5. Output various result files:
		a. A spike raster file giving spike times # gids of spiking cells
		b. A connection file that gives pre- and post- synaptic cell gids and synapse types
		c. A position file that gives the gid and x, y, and z coordinates of each cell
		d. A cell type file that gives cell name and gid range for each cell type
		e. A runtimes file that gives the real time taken by each code section in seconds

DATASETS
Dataset Files - Column Headers

cellnumbers_###.dat:
Cell Type Name - name of the cell as it will be referred to in the conndata and syndata datasets, as well as elsewhere in the code and analysis
Technical Type - which code template to use for the cell (class_[technicalcell].hoc). have these two decoupled means we can play around with which ephys profile to use with which cell if we are trying to study/break a phenomenon we see in the network
Number - number of cells to include in the model (if at full scale, Scale==1.  Will be scaled down proportionally for smaller scale models)
Layer - Which layer (in 3D) to place the cell, 0-oriens, 1-pyramidale, 2-radiatum, 3-lacunosum-moleculare
Artifical Flag - 0: realistic cell, 1: artificial point process spike train cell, 2: Izhikevich neuron


conndata_###.dat:
Presynaptic Cell Type
PostSynaptic Cell Type
Synapse Weight - weight of each synaptic connection in the units of the corresponding mod file's conductance. For this model, we always use microSemiens, uS
Number of Connections - In terms of Convergence onto a single cell: the number of presynaptic cells of that type that connect to 1 postsynaptic cell of the postsynaptic type
Synapses/Connection - since connections between cells often comprise multiple synapses, here set the number of synapses that will be made between each "connection" of 1 presynaptic to 1 postsynaptic cell

syndata_###.dat:
PostSynaptic Cell Type
Presynaptic Cell Type
Synapse Mechanism - corresponds to the name of the NMODL mechanism to use for the synapse (the SUFFIX within the NEURON block of the mod file)
Section List - the section list on the postsynaptic cell (must be defined in that celltype's class_.hoc template) where synapses of this type can be found
Distance Condition 1 - criteria for distance away from the soma synapses may occur (on sections within the section list only)
Distance Condition 2 - criteria for distance away from the soma synapses may occur (on sections within the section list only)
Scaling parameter - blank for all synapses in this model
Tau1 - for all synapses except mixed GABA_AB (for which this field is blank), the 10-90% rise time of the synapse (ms)
Tau2 - for all synapses except mixed GABA_AB (for which this field is blank), the decay time constant of the synapse (ms)
e - for all synapses except mixed GABA_AB (for which this field is blank), the reversal potential of the synapse (mV)
Tau1a - for mixed GABA_AB synapses only (for all others this is blank), the 10-90% rise time of the GABA_A conductance of the synapse (ms)
Tau2a - for mixed GABA_AB synapses only (for all others this is blank), the decay time constant of the GABA_A conductance of the synapse (ms)
ea - for mixed GABA_AB synapses only (for all others this is blank), the reversal potential of the GABA_A conductance of the synapse (mV)
Tau1b - for mixed GABA_AB synapses only (for all others this is blank), the 10-90% rise time of the GABA_B conductance of the synapse (ms)
Tau2b - for mixed GABA_AB synapses only (for all others this is blank), the decay time constant of the GABA_A conductance of the synapse (ms)
eb - for mixed GABA_AB synapses only (for all others this is blank), the reversal potential of the GABA_A conductance of the synapse (mV)

Bezaire M, Raikov I, Burk K, Armstrong C, Soltesz I (2016) SimTracker tool and code template to design, manage and analyze neural network model simulations in parallel NEURON eLife, in press

References and models cited by this paper

References and models that cite this paper

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [Journal] [PubMed]

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

(1 refs)

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife[PubMed]

References and models cited by this paper

References and models that cite this paper

Akam TE, Kullmann DM (2012) Efficient "communication through coherence" requires oscillations structured to minimize interference between signals. PLoS Comput Biol 8:e1002760 [Journal] [PubMed]

Amilhon B, Huh CY, Manseau F, Ducharme G, Nichol H, Adamantidis A, Williams S (2015) Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency. Neuron 86:1277-89 [Journal] [PubMed]

Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215-35 [Journal] [PubMed]

   Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999) [Model]

Armstrong C, Soltesz I (2012) Basket cell dichotomy in microcircuit function. J Physiol 590:683-94 [PubMed]

Atherton JF, Bevan MD (2005) Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci 25:8272-81 [PubMed]

Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, Siegelbaum SA (2016) Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351:aaa5694 [Journal] [PubMed]

Beck H, Clusmann H, Kral T, Schramm J, Heinemann U, Elger CE (1997) Potassium currents in acutely isolated human hippocampal dentate granule cells. J Physiol 498 ( Pt 1):73-85 [PubMed]

Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsaki G (2012) Cross-frequency phase-phase coupling between theta¸ and gamma oscillations in the hippocampus. J Neurosci 32:423-35 [PubMed]

Bezaire M (2015) Modeling physiological oscillations in a biologically constrained CA1 network from two perspectives: full-scale parallel network and rationally reduced Network Clamp http://gradworks.umi.com/37/17/3717051.html PhD Thesis UNIVERSITY OF CALIFORNIA, IRVINE, 2015

Bezaire M, Raikov I, Burk K, Armstrong C, Soltesz I (2016) SimTracker tool and code template to design, manage and analyze neural network model simulations in parallel NEURON eLife, in press

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23:751-85 [PubMed]

Bezaire MJ,Raikov I,Burk K,Vyas D,Soltesz I (2015) Simulation results from full scale and rationally reduced network models of the isolated hippocampal CA1 subfield in rat CRCNS.org [Journal]

Blasco-Ibanez JM, Freund TF (1995) Synaptic input of horizontal interneurons in stratum oriens of the hippocampal CA1 subfield: structural basis of feed-back activation. Eur J Neurosci 7:2170-80 [PubMed]

Borg-Graham LJ (1991) Modeling the nonlinear conductances of excitable membranes Cellular and Molecular Neurobiology: A Practical Approach, Wheal H:Chad J, ed. pp.247

Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47-60 [PubMed]

Butler JL, Mendonça PR, Robinson HP, Paulsen O (2016) Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation. J Neurosci 36:4155-69 [Journal] [PubMed]

Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407-20 [PubMed]

Buzsaki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, Morozov A (2003) Hippocampal network patterns of activity in the mouse. Neuroscience 116:201-11 [PubMed]

Buzsaki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130-8 [PubMed]

Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013) Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron 77:712-22 [Journal] [PubMed]

Capogna M (2011) Neurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal-hippocampal dialogue. J Physiol 589:1875-83 [PubMed]

Carnevale NT, Hines ML (2006) The NEURON Book

Chen K, Aradi I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I (2001) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 7:331-7 [PubMed]

   Febrile seizure-induced modifications to Ih (Chen et al 2001) [Model]

Colgin LL (2013) Mechanisms and functions of theta rhythms. Annu Rev Neurosci 36:295-312 [Journal] [PubMed]

Colgin LL (2016) Rhythms of the hippocampal network. Nat Rev Neurosci 17:239-49 [Journal] [PubMed]

Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353-7 [PubMed]

Colgin LL, Moser EI (2010) Gamma oscillations in the hippocampus. Physiology (Bethesda) 25:319-29 [PubMed]

Cooper DC, Moore SJ, Staff NP, Spruston N (2003) Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum. J Neurosci 23:9937-46 [PubMed]

Craig MT, McBain CJ (2014) The emerging role of GABAB receptors as regulators of network dynamics: fast actions from a 'slow' receptor? Curr Opin Neurobiol 26:15-21 [Journal] [PubMed]

Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J Neurosci 19:274-87 [PubMed]

Cutsuridis V, Cobb S, Graham BP (2009) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423-46 [Journal] [PubMed]

   Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009) [Model]

Cutsuridis V, Hasselmo M (2012) GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus 22:1597-621 [PubMed]

Dannenberg H, Pabst M, Braganza O, Schoch S, Niediek J, Bayraktar M, Mormann F, Beck H (2015) Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci 35:8394-410 [Journal] [PubMed]

Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566-87 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Engel AK, Fries P (2010) Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol 20:156-65 [Journal] [PubMed]

Ferguson KA, Huh CY, Amilhon B, Manseau F, Williams S, Skinner FK (2015) Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Front Syst Neurosci 9:110 [Journal] [PubMed]

   CA1 SOM+ (OLM) hippocampal interneuron (Ferguson et al. 2015) [Model]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK (2013) Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Front Comput Neurosci 7:144 [Journal] [PubMed]

   CA1 PV+ fast-firing hippocampal interneuron (Ferguson et al. 2013) [Model]

Ferraguti F, Klausberger T, Cobden P, Baude A, Roberts JD, Szucs P, Kinoshita A, Shigemoto R, (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520-36 [Journal] [PubMed]

Ficker E, Heinemann U (1992) Slow and fast transient potassium currents in cultured rat hippocampal cells. J Physiol 445:431-55 [PubMed]

Fries P (2015) Rhythms for Cognition: Communication through Coherence. Neuron 88:220-35 [Journal] [PubMed]

Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Thomson A, Somogyi P, Klau (2008) Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57:917-29 [PubMed]

Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, (2010) Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J Neurosci 30:1595-609 [PubMed]

Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuh (2015) Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron 86:1253-64 [Journal] [PubMed]

Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088-100 [PubMed]

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219-35 [Journal] [PubMed]

Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12:1491-3 [PubMed]

Gulyas AI, Megias M, Emri Z, Freund TF (1999) Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci 19:10082-97 [PubMed]

   [67 reconstructed morphologies on NeuroMorpho.Org]

Gulyas AI, Toth K, Danos P, Freund TF (1991) Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus. J Comp Neurol 312:371-8 [PubMed]

Hajos N, Mody I (1997) Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. J Neurosci 17:8427-42 [PubMed]

Hasselmo ME (2005) What is the function of hippocampal theta rhythm?--Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15:936-49 [PubMed]

Hasselmo ME, Bodelon C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14:793-817 [PubMed]

Hendrickson PJ, Yu GJ, Song D, Berger TW (2015) Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study. Front Syst Neurosci 9:155 [Journal] [PubMed]

Hines M, Eichner H, Schuermann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors J Comput Neurosci 25(1):203-210 [Journal] [PubMed]

   Cell splitting in neural networks extends strong scaling (Hines et al. 2008) [Model]

Hines ML, Markram H, Schuermann F (2008) Fully Implicit Parallel Simulation of Single Neurons J Comp Neurosci 25:439-448 [Journal] [PubMed]

   Fully Implicit Parallel Simulation of Single Neurons (Hines et al. 2008) [Model]

Hongo Y, Ogawa K, Takahara Y, Takasu K, Royer S, Hasegawa M, Sakaguchi G, Ikegaya Y (2015) Topological organization of CA3-to-CA1 excitation. Eur J Neurosci 42:2135-43 [Journal] [PubMed]

Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin? GABAergic interneurons: from cellular design to microcircuit function. Science 345:1255263 [Journal] [PubMed]

Jaffe DB, Ross WN, Lisman JE, Lasser-Ross N, Miyakawa H, Johnston D (1994) A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J Neurophysiol 71:1065-77 [Journal] [PubMed]

Jedlicka P, Deller T, Schwarzacher SW (2010) Computational modeling of GABAA receptor-mediated paired-pulse inhibition in the dentate gyrus. J Comput Neurosci 29:509-19 [Journal] [PubMed]

Jedlicka P, Hoon M, Papadopoulos T, Vlachos A, Winkels R, Poulopoulos A, Betz H, Deller T, Br (2010) Increased Dentate Gyrus Excitability in Neuroligin-2-Deficient Mice in Vivo. Cereb Cortex [Journal] [PubMed]

Jeewajee A, Barry C, Douchamps V, Manson D, Lever C, Burgess N (2014) Theta phase precession of grid and place cell firing in open environments. Philos Trans R Soc Lond B Biol Sci 369:20120532 [Journal] [PubMed]

Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11:267-9 [Journal] [PubMed]

Jensen O, Lisman JE (2000) Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol 83:2602-9 [Journal] [PubMed]

Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, Bushong EA, Henze D, (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27:8790-804 [PubMed]

Katona L, Lapray D, Viney TJ, Oulhaj A, Borhegyi Z, Micklem BR, Klausberger T, Somogyi P (2014) Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus. Neuron 82:872-86 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]

Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16:5-16 [Journal] [PubMed]

Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505:318-26 [Journal] [PubMed]

Kispersky TJ, Fernandez FR, Economo MN, White JA (2012) Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics. J Neurosci 32:3637-51 [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]

Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844-8 [PubMed]

Klausberger T, Marton LF, Baude A, Roberts JD, Magill PJ, Somogyi P (2004) Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7:41-7 [PubMed]

Klausberger T, Marton LF, O'Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kane (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782-93 [Journal] [PubMed]

Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53-7 [PubMed]

Klee R, Ficker E, Heinemann U (1995) Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. J Neurophysiol 74:1982-95 [Journal] [PubMed]

Kohl MM, Paulsen O (2010) The roles of GABAB receptors in cortical network activity. Adv Pharmacol 58:205-29 [Journal] [PubMed]

Kramis R, Vanderwolf CH, Bland BH (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol 49:58-85 [PubMed]

Krook-Magnuson E, Luu L, Lee SH, Varga C, Soltesz I (2011) Ivy and neurogliaform interneurons are a major target of µ-opioid receptor modulation. J Neurosci 31:14861-70 [Journal] [PubMed]

Lancaster B, Nicoll RA, Perkel DJ (1991) Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci 11:23-30 [PubMed]

Lapray D, Lasztoczi B, Lagler M, Viney TJ, Katona L, Valenti O, Hartwich K, Borhegyi Z, Somog (2012) Behavior-dependent specialization of identified hippocampal interneurons. Nat Neurosci 15:1265-71 [PubMed]

Latorre R, Oberhauser A, Labarca P, Alvarez O (1989) Varieties of calcium-activated potassium channels. Annu Rev Physiol 51:385-99 [PubMed]

Lee SH, Foldy C, Soltesz I (2010) Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus. J Neurosci 30:7993-8000 [PubMed]

Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I (2014) Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells Neuron 82(5):1129-44 [Journal] [PubMed]

   [13 reconstructed morphologies on NeuroMorpho.Org]
   Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014) [Model]

Lee SH,Krook-Magnuson E,Soltesz I (2016) Intracellular, in vitro somatic membrane potential recordings from whole cell patch clamped rodent hippocampal CA1 neurons CRCNS.org [Journal]

Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058-68 [PubMed]

Lisman JE, Idiart MA (1995) Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science 267:1512-5 [PubMed]

Lisman JE, Jensen O (2013) The ?-? neural code. Neuron 77:1002-16 [PubMed]

Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol 524 Pt 1:91-116 [PubMed]

Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613-24 [PubMed]

Maier N, Tejero-Cantero A, Dorrn AL, Winterer J, Beed PS, Morris G, Kempter R, Poulet JF, Lei (2011) Coherent phasic excitation during hippocampal ripples. Neuron 72:137-52 [Journal] [PubMed]

Manns JR, Zilli EA, Ong KC, Hasselmo ME, Eichenbaum H (2007) Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. Neurobiol Learn Mem 87:9-20 [Journal] [PubMed]

Maris E, Fries P, van Ede F (2016) Diverse Phase Relations among Neuronal Rhythms and Their Potential Function. Trends Neurosci 39:86-99 [Journal] [PubMed]

Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril JP, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Be JV, Magalhães BR, Merchan-Perez A, Meystre J, Morrice BR, Muller J, Muñoz-Cespedes A, et al. (2015) Reconstruction and Simulation of Neocortical Microcircuitry. Cell 163:456-92 [Journal] [PubMed]

   [5 reconstructed morphologies on NeuroMorpho.Org]

Mátyás F, Freund TF, Gulyás AI (2004) Convergence of excitatory and inhibitory inputs onto CCK-containing basket cells in the CA1 area of the rat hippocampus. Eur J Neurosci 19:1243-56 [Journal] [PubMed]

   [14 reconstructed morphologies on NeuroMorpho.Org]

Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527-40 [PubMed]

   [18 reconstructed morphologies on NeuroMorpho.Org]

Melander A, Olsson J, Lindberg G, Salzman A, Howard T, Stang P, Lydick E, Emslie-Smith A, Boy (1999) 35th Annual Meeting of the European Association for the Study of Diabetes : Brussels, Belgium, 28 September-2 October 1999. Diabetologia 42:A1-A330 [PubMed]

Mercer A, Eastlake K, Trigg HL, Thomson AM (2012) Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus. Hippocampus 22:43-56 [Journal] [PubMed]

Metz AE, Jarsky T, Martina M, Spruston N (2005) R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J Neurosci 25:5763-73 [PubMed]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel Network Simulations with NEURON. J Comp Neurosci 21:110-119 [Journal] [PubMed]

   Parallel network simulations with NEURON (Migliore et al 2006) [Model]

Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68 [Journal] [PubMed]

   CA3 Pyramidal Neuron (Migliore et al 1995) [Model]

Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5-15 [Journal] [PubMed]

   CA1 pyramidal neuron (Migliore et al 1999) [Model]

Mizuseki K, Sirota A, Pastalkova E, Buzsaki G (2009) Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64:267-80 [PubMed]

Moczydlowski E, Latorre R (1983) Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82:511-42 [Journal] [PubMed]

   Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON [Model]
   Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP [Model]

Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179-84 [Journal] [PubMed]

   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 31:69-89 [PubMed]

Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus Journal of Neuroscience 31(32):11733-11743 [Journal] [PubMed]

   Ketamine disrupts theta modulation of gamma in a computer model of hippocampus (Neymotin et al 2011) [Model]

Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19-75 [Journal] [PubMed]

   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]

Numann RE, Wadman WJ, Wong RK (1987) Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 393:331-53 [PubMed]

Papp OI, Karlócai MR, Tóth IE, Freund TF, Hájos N (2013) Different input and output properties characterize parvalbumin-positive basket and Axo-axonic cells in the hippocampal CA3 subfield. Hippocampus 23:903-18 [Journal] [PubMed]

   [25 reconstructed morphologies on NeuroMorpho.Org]

Poolos NP, Migliore M, Johnston D (2002) Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5:767-74 [PubMed]

   CA1 pyramidal neuron: effects of Lamotrigine on dendritic excitability (Poolos et al 2002) [Model]

Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R, Capogna M (2005) Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci 25:6775-86 [PubMed]

Quattrocolo G, Maccaferri G (2013) Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus. J Neurosci 33:5486-98 [Journal] [PubMed]

Quattrocolo G,Maccaferri G (2016) Firing pattern of O-LM cells in mouse hippocampal ca1 CRCNS.org [Journal]

Ramaswamy S, Courcol JD, Abdellah M, Adaszewski SR, Antille N, Arsever S, Atenekeng G, Bilgili A, Brukau Y, Chalimourda A, Chindemi G, Delalondre F, Dumusc R, Eilemann S, Gevaert ME, Gleeson P, Graham JW, Hernando JB, Kanari L, Katkov Y, Keller D, King JG, Ranjan R, Reimann MW, Rössert C, Shi Y, Shillcock JC, Telefont M, Van Geit W, Diaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Muller J, Segev I, Schürmann F, Muller EB, Markram H (2015) The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Front Neural Circuits 9:44 [Journal] [PubMed]

Remondes M, Schuman EM (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431:699-703 [PubMed]

Robbe D, Montgomery SM, Thome A, Rueda-Orozco PE, McNaughton BL, Buzsaki G (2006) Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat Neurosci 9:1526-33 [PubMed]

Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Whittington MA, Kopell (2005) Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. J Neurophysiol 94:1509-18 [Journal] [PubMed]

Sah P (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150-4 [PubMed]

Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [Journal] [PubMed]

   Dentate gyrus network model (Santhakumar et al 2005) [Model]
   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Saraga F, Wu CP, Zhang L, Skinner FK (2003) Active Dendrites and Spike Propagation in Multi-compartment Models of Oriens-Lacunosum/Moleculare Hippocampal Interneurons. J Physiol 552(3):673-689 [Journal] [PubMed]

   Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003) [Model]

Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [Journal] [PubMed]

   CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015) [Model]

Schneider CJ, Cuntz H, Soltesz I (2014) Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations. PLoS Comput Biol 10:e1003921 [Journal] [PubMed]

   Generation of granule cell dendritic morphology (Schneider et al. 2014) [Model]

Schomburg EW, Anastassiou CA, Buzsáki G, Koch C (2012) The spiking component of oscillatory extracellular potentials in the rat hippocampus. J Neurosci 32:11798-811 [Journal] [PubMed]

Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, Buzsáki G (2014) Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84:470-85 [Journal] [PubMed]

Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299-306 [PubMed]

Tejada J, Roque AC (2014) Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells. Epilepsy Behav 38:63-70 [Journal] [PubMed]

Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by Modeling That Epilepsy May Be Caused by Very Small Functional Changes in Ion Channels Arch Neurol. 66(10):1225-1232 [Journal] [PubMed]

   Epilepsy may be caused by very small functional changes in ion channels (Thomas et al. 2009) [Model]

Thomas EA, Reid CA, Petrou S (2009) Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia [Journal] [PubMed]

   Na channel mutations in the dentate gyrus (Thomas et al. 2009) [Model]

Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A 106:20942-7 [PubMed]

Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ (2011) A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 31:10948-70 [Journal] [PubMed]

   [47 reconstructed morphologies on NeuroMorpho.Org]

Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC (2014) NeuroElectro: a window to the world's neuron electrophysiology data. Front Neuroinform 8:40 [Journal] [PubMed]

Varga C, Golshani P, Soltesz I (2012) Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc Natl Acad Sci U S A 109:E2726-34 [PubMed]

Varga C, Oijala M, Lish J, Szabo GG, Bezaire M, Marchionni I, Golshani P, Soltesz I (2014) Functional fission of parvalbumin interneuron classes during fast network events. Elife [Journal] [PubMed]

   [3 reconstructed morphologies on NeuroMorpho.Org]

Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA (2015) Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. Elife [Journal] [PubMed]

Winkels R, Jedlicka P, Weise FK, Schultz C, Deller T, Schwarzacher SW (2009) Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo. Hippocampus 19:677-86 [PubMed]

Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609-12 [Journal] [PubMed]

Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G (1995) Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78-90 [PubMed]

Yuen GL, Durand D (1991) Reconstruction of hippocampal granule cell electrophysiology by computer simulation. Neuroscience 41:411-23 [PubMed]

(135 refs)