Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:187604
This model is a full-scale, biologically constrained rodent hippocampal CA1 network model that includes 9 cells types (pyramidal cells and 8 interneurons) with realistic proportions of each and realistic connectivity between the cells. In addition, the model receives realistic numbers of afferents from artificial cells representing hippocampal CA3 and entorhinal cortical layer III. The model is fully scaleable and parallelized so that it can be run at small scale on a personal computer or large scale on a supercomputer. The model network exhibits spontaneous theta and gamma rhythms without any rhythmic input. The model network can be perturbed in a variety of ways to better study the mechanisms of CA1 network dynamics. Also see online code at http://bitbucket.org/mbezaire/ca1 and further information at http://mariannebezaire.com/models/ca1
References:
1 . Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. Elife [PubMed]
2 . Bezaire M, Raikov I, Burk K, Armstrong C, Soltesz I (2016) SimTracker tool and code template to design, manage and analyze neural network model simulations in parallel NEURON bioRxiv
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 interneuron oriens alveus cell; Hippocampus CA1 basket cell; Hippocampus CA1 stratum radiatum interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 PV+ fast-firing interneuron;
Channel(s): I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; GabaB; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; NEURON (web link to model);
Model Concept(s): Oscillations; Methods; Connectivity matrix; Laminar Connectivity; Gamma oscillations;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com]; Raikov, Ivan [ivan.g.raikov at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; Hippocampus CA1 interneuron oriens alveus cell; GabaA; GabaB; Glutamate; Gaba; I Na,t; I K; I K,leak; I h; I K,Ca; I Calcium; Gaba; Glutamate;
TITLE intracellular calcium accumulation

COMMENT
intracellular Ca2+ accumulation
From: 
Notes:
	calcium accumulation into a volume of area*depth next to the
	membrane with a decay (time constant tau) to resting level
	given by the global calcium variable cai0_ca_ion
	
Ions: ca

From: Modified from Aradi & Holmes 1999

Updates:
2014 December (Marianne Bezaire): documented
ENDCOMMENT



VERBATIM
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
ENDVERBATIM

NEURON {
SUFFIX iconc_Ca
USEION ca READ cai, ica, eca WRITE eca, cai VALENCE 2
RANGE caiinf, catau, cai, eca
THREADSAFE
}

UNITS {
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (milli/liter)
	(mA) = (milliamp)
	FARADAY = 96520 (coul)
	R = 8.3134	(joule/degC)
}

INDEPENDENT {t FROM 0 TO 100 WITH 100 (ms)}

PARAMETER {
    celsius (degC) : temperature - set in hoc; default is 6.3
	depth = 200 (nm)	: assume volume = area*depth
	catau = 9 (ms)
	caiinf = 50.e-6 (mM)	: takes precedence over cai0_ca_ion
			: Do not forget to initialize in hoc if different
			: from this default.
	cao = 2 (mM)
	ica (mA/cm2)
}

ASSIGNED {
	eca (mV)
}

STATE {
	cai
}

: verbatim blocks are not thread safe (perhaps related, this mechanism cannot be used with cvode)
INITIAL {
	:VERBATIM	/* what is the point of this? */	
	:cai = _ion_cai;
	:ENDVERBATIM
	cai = caiinf	
	eca = ktf() * log(cao/caiinf)	
}


BREAKPOINT {
	SOLVE integrate METHOD derivimplicit
	eca = ktf() * log(cao/cai)	
}

DERIVATIVE integrate {
cai' = -(ica)/depth/FARADAY * (1e7) + (caiinf - cai)/catau
}

FUNCTION ktf() (mV) {
	ktf = (1000)*R*(celsius +273.15)/(2*FARADAY)
} 

Loading data, please wait...