Endocannabinoid dynamics gate spike-timing dependent depression and potentiation (Cui et al 2016)

 Download zip file 
Help downloading and running models
The endocannabinoid (eCB) system is considered involved in synaptic depression. Recent reports have also linked eCBs to synaptic potentiation. However it is not known how eCB signaling may support such bidirectionality. To question the mechanisms of this phenomena in spike-timing dependent plasticity (STDP) at corticostriatal synapses, we combined electrophysiology experiments with biophysical modeling. We demonstrate that STDP is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Therefore, just like neurotransmitters glutamate or GABA, eCB form a bidirectional system.
1 . Cui Y, Prokin I, Xu H, Delord B, Genet S, Venance L, Berry H (2016) Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. Elife 5:e13185 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Channel/Receptor;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; Neostriatum spiny neuron;
Channel(s): I L high threshold; I Calcium; I_SERCA; I Cl, leak; Ca pump;
Gap Junctions:
Receptor(s): AMPA; NMDA; mGluR; Glutamate; IP3;
Simulation Environment: FORTRAN; Python;
Model Concept(s): Ion Channel Kinetics; Coincidence Detection; Parameter Fitting; Synaptic Plasticity; Long-term Synaptic Plasticity; Signaling pathways; STDP; Calcium dynamics; Parameter sensitivity; G-protein coupled; Neuromodulation;
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; AMPA; NMDA; mGluR; Glutamate; IP3; I L high threshold; I Calcium; I_SERCA; I Cl, leak; Ca pump;
!    -*- f95 -*-
! (c) 2016 - Ilya Prokin - isprokin@gmail.com - https://sites.google.com/site/ilyaprokin
! INRIA Rhone-Alpes
! STDP model : An implementation of bistable CaMKII model of Graupner, Michael, and Nicolas Brunel. “STDP in a Bistable Synapse Model Based on CaMKII and
! Associated Signaling Pathways.” Edited by Karl J Friston. PLoS Computational Biology 3, no. 11 (November 2007): e221–e221.
! doi:10.1371/journal.pcbi.0030221.

module CaMKII_plast

    use pars_mod

    implicit none


    real*8 function CaM_conc(Ca_cyt, pars) 
        implicit none
        real*8 :: Ca_cyt
        type(pars_type) :: pars
        type(post_CaMKII_plast_type) :: p
        p = pars%post_CaMKII_plast
        CaM_conc = p%CaMT/(1 + p%Ka4/Ca_cyt + p%Ka3*p%Ka4/(Ca_cyt**2) + p%Ka2*p%Ka3*p%Ka4/(Ca_cyt**3) + p%Ka1*p%Ka2*p%Ka3*p%Ka4/(Ca_cyt**4))
    end function CaM_conc

    subroutine dy_CaMKII(y, PP1, CaM, pars,   dy, phossum)
        implicit none
        real*8, intent(in) :: y(13), PP1, CaM
        type(pars_type), intent(in) :: pars
        real*8, intent(out) :: phossum
        real*8, intent(out) :: dy(13)
        type(post_CaMKII_plast_type) :: p
        real*8 :: B0, sum_y23, sum_y24, sum_y57, sum_y58, sum_y911, rr
        real*8 :: k10, gamma, gamma2, k6gamma2, k7gamma
        dy = 0.0
        p = pars%post_CaMKII_plast
        ! B0 is whats left from total
        ! kinetic equations
        phossum=y(1) + 2*sum_y24 + 3*sum_y58 + 4*sum_y911 + 5*y(12) + 6*y(13)
        k10=p%k12*PP1/(p%KM + phossum)

        dy(1) = 6*k6gamma2*B0 - (4*k6gamma2 + k7gamma + k10)*y(1) + 2*k10*sum_y24
        dy(2) = (k7gamma + k6gamma2)*y(1) - (3*k6gamma2 + k7gamma + 2*k10)*y(2) + k10*(y(5) + sum_y57)
        dy(3) = 2*k6gamma2*y(1) - 2*(k7gamma + k6gamma2 + k10)*y(3) + k10*(sum_y57 + 3*y(8)) 
        dy(4) = k6gamma2*y(1) - 2*(k7gamma + k6gamma2 + k10)*y(4) + k10*(y(6) + y(7))
        dy(5) = k7gamma*(sum_y23 - y(5)) + k6gamma2*(y(2) - 2*y(5)) + k10*(2*y(9) + y(10) - 3*y(5))
        dy(6) = k6gamma2*(sum_y23 - y(6))  + k7gamma*(2*y(4)  - 2*y(6)) +k10*(-3*y(6) + sum_y911 + y(11))
        dy(7) = k6gamma2*(y(2) + 2*y(4) - y(7)) + k7gamma*(y(3) - 2*y(7)) +k10*(-3*y(7) + y(9) + y(10) + 2*y(11))
        dy(8) = k6gamma2*y(3) - 3*k7gamma*y(8) + k10*(y(10)- 3*y(8))
        dy(9) = k7gamma*(sum_y57 - y(9)) + k6gamma2*(y(5) - y(9)) +k10*(-4*y(9) + 2*y(12))
        dy(10)=  k6gamma2*y(5) + k6gamma2*y(6) + k7gamma*(y(7) + 3*y(8) - 2*y(10))  + k10*(2*y(12)- 4*y(10))
        dy(11)= k7gamma*(y(6)- 2*y(11)) +  k6gamma2*y(7)  + k10*(y(12)- 4*y(11))
        dy(12)= k6gamma2*y(9) +k7gamma*(2*sum_y911-y(9) - y(12))  + k10*(6*y(13)- 5*y(12))
        dy(13)= k7gamma*y(12) - 6*k10*y(13)
    end subroutine dy_CaMKII

    pure real*8 function CaMKIIpho_func(y)
        implicit none
        real*8, intent(in) :: y(13)
        real*8 :: sum_y24, sum_y58, sum_y911
        CaMKIIpho_func = y(1) + 2*sum_y24 + 3*sum_y58 + 4*sum_y911 + 5*y(12) + 6*y(13)
    end function CaMKIIpho_func

    subroutine d_PP1_I1P(PP1, I1P, CaM, pars,   dPP1, dI1P)
        implicit none
        real*8, intent(in) :: PP1, I1P, CaM
        type(pars_type), intent(in) :: pars
        real*8, intent(out) :: dPP1, dI1P
        type(post_CaMKII_plast_type) :: p
        real*8 :: vPKA, vCaN, k11, km11
        p = pars%post_CaMKII_plast
        vPKA = p%kpka0I1 + p%kpkaI1/(1 + (p%KdpkaI1/CaM)**p%npkaI1)
        vCaN = p%kcan0I1 + p%kcanI1/(1 + (p%KdcanI1/CaM)**p%ncanI1)
        dPP1= -k11*I1P*PP1 + km11*(p%PP10 - PP1) !RHS PP1
        dI1P= dPP1 + vPKA*p%I10 - vCaN*I1P !RHS I1P
    end subroutine d_PP1_I1P

end module CaMKII_plast

Loading data, please wait...