Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:187615
Python and MATLAB scripts for studying the dual effects of SCZ-related genes on layer 5 pyramidal cell firing and sinoatrial node cell pacemaking properties. The study is based on two L5PC models (Hay et al. 2011, Almog & Korngreen 2014) and SANC models (Kharche et al. 2011, Severi et al. 2012).
Reference:
1 . Mäki-Marttunen T, Lines GT, Edwards AG, Tveito A, Dale AM, Einevoll GT, Andreassen OA (2017) Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling. Transl Psychiatry 7:5 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell; Cardiac atrial cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I A, slow; Na/Ca exchanger; I_SERCA; Na/K pump; Kir;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.1 SCN1A; Cav3.3 CACNA1I; Cav1.3 CACNA1D; Cav1.2 CACNA1C;
Transmitter(s):
Simulation Environment: NEURON; MATLAB; Python;
Model Concept(s): Schizophrenia;
Implementer(s): Maki-Marttunen, Tuomo [tuomo.maki-marttunen at tut.fi];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I A, slow; Na/Ca exchanger; I_SERCA; Na/K pump; Kir;
%function S=subplottight(M,N,dx,dy)
function S=subplottight2(M,N,dx,dy)

if nargin < 3 ||isempty(dx)
    dx = 0.05;
end
if nargin < 4 ||isempty(dy)
    dy = 0.05;
end

if length(dx)==1
    dx = [dx dx dx];
elseif length(dx)==2
    dx = [dx(1) dx(2) dx(2)];
end
if length(dy)==1
    dy = [dy dy dy];
elseif length(dy)==2
    dy = [dy(1) dy(2) dy(2)];
end

w = (1-dx(1)-dx(3)-(N-1)*dx(2))/N;
h = (1-dy(1)-dy(3)-(M-1)*dy(2))/M;

S = zeros(M,N);
for i=1:M
    
    for j=1:N
        S(i,j) = subplot('position',[dx(1)+(j-1)*(w+dx(2)),dy(1)+(i-1)*(h+dy(2)),w,h]);
    end
end

Loading data, please wait...