Effects of electric fields on cognitive functions (Migliore et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:190559
The paper discusses the effects induced by an electric field at power lines frequency on neuronal activity during cognitive processes.
Reference:
1 . Migliore R, De Simone G, Leinekugel X, Migliore M (2017) The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons. Eur J Neurosci 45:1024-1031 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Extracellular Fields; Gamma oscillations; Pattern Recognition; Spatio-temporal Activity Patterns;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Migliore, Rosanna [rosanna.migliore at cnr.it];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I h; Glutamate;
/
MiglioreEJN2016
readme.html
distr.mod *
distr2.mod
fzap.mod *
Gfluct.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstimm.mod *
xtrau.mod *
anatscale.hoc *
biophys.hoc
biophysPLAST.hoc
calcd.hoc
calcrxcu.hoc
ef_fig.png
efheader.hoc *
fig1B.hoc
fixnseg.hoc *
freq50.xfm
geo5038804.hoc *
init.hoc
interpxyzu.hoc *
LTDran.hoc
media-st er.xfm
mosinit.hoc
Napical.txt
no_ef_fig.png
Plast.hoc
setnseg.hoc *
setpointersu.hoc *
soma.hoc
synapses.hoc
voltage.ses
zapstimu.hoc
                            
// zapstimu.hoc, based on zapstim.hoc
/* The stimulus is generated by an instance of the Fzap class 
(a point process that produces a sine wave of user-specified duration and
amplitude, that sweeps over a range of frequencies at a constant rate).
For each section that has the xtra mechanism, this waveform 
is used to drive is_xtra.
The transfer resistance rx_xtra takes care of the 
amplitude and sign of the local extracellular field.
*/

// default values
DEL = 2000  // ms
DUR = 4000  // ms
F0 = 50  // Hz
F1 = 50 // Hz
// AMP = 1  // nA
AMP = 500  // V/m


objref fz
fz = new Fzap(0.5)
// setpointer fz.x, is_xtra(0.5)
// setpointer fz.x, is_xtra
setpointer fz.x, E_xtrau

proc setstim() {
  fz.del = $1
  fz.dur = $2
  fz.f0 = $3
  fz.f1 = $4
  fz.amp = $5
}

setstim(DEL, DUR, F0, F1, AMP)
/*
print "Use setstim(DEL, DUR, F0, F1, AMP) to change latency (ms), duration (ms),"
print "start and end frequency (Hz), and amplitude (V/m) of applied electrical field."

xpanel("Applied Electrical Field", 0)
  xvalue("del (ms)", "DEL", 1, "setstim(DEL,DUR,F0,F1,AMP)", 0, 1)
  xvalue("dur (ms)", "DUR", 1, "setstim(DEL,DUR,F0,F1,AMP)", 0, 1)
  xvalue("start f (Hz)", "F0", 1, "setstim(DEL,DUR,F0,F1,AMP)", 0, 1)
  xvalue("end f (Hz)", "F1", 1, "setstim(DEL,DUR,F0,F1,AMP)", 0, 1)
  xvalue("amp (V/m)", "AMP", 1, "setstim(DEL,DUR,F0,F1,AMP)", 0, 1)
xpanel(73,497)*/

Loading data, please wait...