Model of memory linking through memory allocation (Kastellakis et al. 2016)

 Download zip file 
Help downloading and running models
Accession:206249
Here, we present a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (a) learning of a single associative memory (b) rescuing of a weak memory when paired with a strong one and (c) linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: Linked memories share synaptic clusters within the dendrites of overlapping populations of neurons
Reference:
1 . Kastellakis G, Silva AJ, Poirazi P (2016) Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell Rep 17:1491-1504 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Abstract integrate-and-fire leaky neuron with dendritic subunits;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program; C or C++ program (web link to model);
Model Concept(s): Active Dendrites;
Implementer(s): Kastellakis, George [gkastel at gmail.com];
/
stdmodel
distributionPlot
exportfig
figs
mtrand
README
allgraphs.m
allrun.m
an_brtest.m
an_stats.m
anmulti.py
ansims.py
barwitherr.m *
btagstats.m *
CImg.h *
constructs.cpp
constructs.h
defaults.m
dir2.m *
getspikedata.m *
getsynstate.m *
getsynstate2.m *
graphs.m *
hist_percents.m *
hist_with_errs.m *
interact.m *
intexp_constructs.cpp
job_sims.sh
kurtos.m *
lamodel.cpp
LICENSE *
make_graphs.m *
Makefile *
matlab.mat *
mtest.py
mtrand.cpp *
mtrand.h *
multi.py
multistats.m *
nextplot.m *
pairstrong.m *
repeated.m *
rotateXLabels.m *
run_1.sh
run_2strong.sh
run_2weak.sh
run_3.sh
run_all.sh
run_brov.sh
run_brtest.sh
run_btag.sh
run_dir.sh
run_ep.sh
run_gp.sh
run_gp2.sh
run_mult.sh
run_Nsparse.sh
run_pairstrong.sh
run_rep.sh
run_sims.sh
run_sparse.sh
run_sparseS2.sh
runloc.sh
runmany.sh
S2sparse.m *
savefig.m *
scratch.m *
sensitivity.m *
stats.m *
stats.py *
stderr.m *
strong2.m *
strongstrong.m *
submit_lamodel.sh *
three.m *
trevrolls.m *
vis.py *
weastrong.m *
wxglmodel *
wxglmodel.cpp *
wxglmodel.h *
wxmodel.cpp *
wxmodel.h *
                            
function la_run {
	#qsub -v "LAPARAMS=$LAPARAMS" submit_lamodel.sh
	./lamodel $LAPARAMS 
}



for s in 0 1 2 3 4 5 6 7 8 9; do
	for i in 60 300 1440; do

		#LAPARAMS="-P 10 -T $i -S 19$s  -s multi_${i}_${s}"
		#qsub -v "LAPARAMS=${LAPARAMS}" submit_lamodel.sh

		LAPARAMS="-P 10   -T $i -S 19$s  -L   -s multiL_${i}_${s}"
		qsub -v "LAPARAMS=${LAPARAMS}" submit_lamodel.sh

		LAPARAMS="-P 10   -T $i -S 19$s  -G   -s multiG_${i}_${s}"
		qsub -v "LAPARAMS=${LAPARAMS}" submit_lamodel.sh

		LAPARAMS="-P 10  -T $i -S 19$s  -G  -n  -s multiGN_${i}_${s}"
		qsub -v "LAPARAMS=${LAPARAMS}" submit_lamodel.sh

		LAPARAMS="-P 10 -T $i -S 19$s  -n -L  -s multiLN_${i}_${s}" 
		qsub -v "LAPARAMS=${LAPARAMS}" submit_lamodel.sh

		#LAPARAMS=" -U -T $i -S 19$s -H 1 -n  -s multiUHN_${i}_${s}"
		#qsub -v "LAPARAMS=${LAPARAMS}" submit_lamodel.sh
		#sleep 1


	done
done


Loading data, please wait...