Synaptic integration by MEC neurons (Justus et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222359
Pyramidal cells, stellate cells and fast-spiking interneurons receive running speed dependent glutamatergic input from septo-entorhinal projections. These models simulate the integration of this input by the different MEC celltypes.
Reference:
1 . Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA, Schoch S, Bradke F, Schwarz MK, Remy S (2017) Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci 20:16-19 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Entorhinal cortex;
Cell Type(s): Entorhinal cortex pyramidal cell; Entorhinal cortex stellate cell; Entorhinal cortex fast-spiking interneuron;
Channel(s): I K; I Na,t; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration; Simplified Models;
Implementer(s): Justus, Daniel [daniel.justus at dzne.de];
Search NeuronDB for information about:  AMPA; I Na,t; I K; I h; Glutamate;
/
NEURON_mEC
data
README.html
exp2syn_depress.mod
h.mod *
kap.mod *
kdr.mod *
nax.mod
vecevent.mod *
cinit.hoc
EPSPparam.hoc
GUI.hoc
GUIfunctions.hoc
init.hoc
insert_noise_Syn.hoc
insert_real_Syn.hoc
insertsyn.hoc
morphology.hoc
mosinit.hoc *
Parameters.hoc
run_real_input.hoc
screenshot1.png
screenshot2.png
screenshot3.png
Voltage.ses
                            
nSyn=0

proc insertsynE() {			// section, num, time, tau1,tau2,weight,stop,freq
	nSyn=0
	objref SynE[10000]
	objref NCE[10000]
	objref NetSE[10000]
	forsec $o1{
		
		A=0
		for (x) A+=area(x)
		num=$2
		for i=1,num {
			
			loc=i/((num+1))
			NetSE[nSyn]=new NetStim(loc)
			NetSE[nSyn].start=$3
			NetSE[nSyn].number=int(($7-$3)/1000*$8)
			NetSE[nSyn].interval=1000/$8
			NetSE[nSyn].noise=0
			
			SynE[nSyn]=new Exp2Syn_depress(loc)
			SynE[nSyn].tau1=$4
			SynE[nSyn].tau2=$5
			SynE[nSyn].tau_recover=300
			SynE[nSyn].attenuation=0.5
			SynE[nSyn].e=0			
			
			NCE[nSyn]=new NetCon(NetSE[nSyn],SynE[nSyn])
			NCE[nSyn].weight=$6
			NCE[nSyn].delay=0
			nSyn+=1
		}
	}
	cinit()
}

Loading data, please wait...