Synaptic integration by MEC neurons (Justus et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222359
Pyramidal cells, stellate cells and fast-spiking interneurons receive running speed dependent glutamatergic input from septo-entorhinal projections. These models simulate the integration of this input by the different MEC celltypes.
Reference:
1 . Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA, Schoch S, Bradke F, Schwarz MK, Remy S (2017) Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci 20:16-19 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Entorhinal cortex;
Cell Type(s): Entorhinal cortex pyramidal cell; Entorhinal cortex stellate cell; Entorhinal cortex fast-spiking interneuron;
Channel(s): I K; I Na,t; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration; Simplified Models;
Implementer(s): Justus, Daniel [daniel.justus at dzne.de];
Search NeuronDB for information about:  AMPA; I Na,t; I K; I h; Glutamate;
/
NEURON_mEC
data
README.html
exp2syn_depress.mod
h.mod *
kap.mod *
kdr.mod *
nax.mod
vecevent.mod *
cinit.hoc
EPSPparam.hoc
GUI.hoc
GUIfunctions.hoc
init.hoc
insert_noise_Syn.hoc
insert_real_Syn.hoc
insertsyn.hoc
morphology.hoc
mosinit.hoc *
Parameters.hoc
run_real_input.hoc
screenshot1.png
screenshot2.png
screenshot3.png
Voltage.ses
                            
load_file("nrngui.hoc")
load_file("init.hoc")

Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA, Schoch S, Bradke F, Schwarz MK, Remy S (2017) Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci 20:16-19[PubMed]

References and models cited by this paper

References and models that cite this paper

Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:128-43 [Journal] [PubMed]

Brown CW, Stephenson KB, Hanson S, Kucharczyk M, Duncan R, Bell JC, Lichty BD (2009) The p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus neuropathogenesis. J Virol 83:552-61 [Journal] [PubMed]

Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5:e1000291-55 [PubMed]

Burgess N, Barry C, O'Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17:801-12 [PubMed]

Chorev E, Preston-Ferrer P, Brecht M (2016) Representation of egomotion in rat's trident and E-row whisker cortices. Nat Neurosci 19:1367-73 [Journal] [PubMed]

Fuchs EC, Neitz A, Pinna R, Melzer S, Caputi A, Monyer H (2016) Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex. Neuron 89:194-208 [Journal] [PubMed]

Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuh (2015) Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron 86:1253-64 [Journal] [PubMed]

Gonzalez-Sulser A, Parthier D, Candela A, McClure C, Pastoll H, Garden D, Sürmeli G, Nolan MF (2014) GABAergic projections from the medial septum selectively inhibit interneurons in the medial entorhinal cortex. J Neurosci 34:16739-43 [Journal] [PubMed]

Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17:533-57 [Journal] [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hinman JR, Brandon MP, Climer JR, Chapman GW, Hasselmo ME (2016) Multiple Running Speed Signals in Medial Entorhinal Cortex. Neuron 91:666-79 [Journal] [PubMed]

Jeewajee A, Barry C, O'Keefe J, Burgess N (2008) Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats. Hippocampus 18:1175-85 [PubMed]

Jones RS (1994) Synaptic and intrinsic properties of neurons of origin of the perforant path in layer II of the rat entorhinal cortex in vitro. Hippocampus 4:335-53 [Journal] [PubMed]

Justus D,Dalügge D,Bothe S,Kaneko H,Sosulina L,Remy S (2016) Electrophysiological profiles of cell-types in medial entorhinal cortex. figshare https://figshare.com/articles/Electrophysiological_profiles_of_ cell-types_in_medial_entorhinal_cortex/4103136 [Journal]

Kadir SN, Goodman DF, Harris KD (2014) High-dimensional cluster analysis with the masked EM algorithm. Neural Comput 26:2379-94 [Journal] [PubMed]

King C, Recce M, O'Keefe J (1998) The rhythmicity of cells of the medial septum-diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta. Eur J Neurosci 10:464-77 [PubMed]

Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S (2014) Island cells control temporal association memory. Science 343:896-901 [Journal] [PubMed]

Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332:592-5 [PubMed]

Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523:419-24 [Journal] [PubMed]

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168-76 [PubMed]

Longair MH, Baker DA, Armstrong JD (2011) Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27:2453-4 [PubMed]

Luyten A, Mortier E, Van Campenhout C, Taelman V, Degeest G, Wuytens G, Lambaerts K, David G, (2008) The postsynaptic density 95/disc-large/zona occludens protein syntenin directly interacts with frizzled 7 and supports noncanonical Wnt signaling. Mol Biol Cell 19:1594-604 [Journal] [PubMed]

Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895-903 [PubMed]

   CA1 pyramidal neuron: Synaptic Scaling (Magee, Cook 2000) [Model]

Manns ID, Mainville L, Jones BE (2001) Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience 107:249-63 [PubMed]

McNaughton BL, Barnes CA, O'Keefe J (1983) The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52:41-9 [PubMed]

McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci 7:663-78 [PubMed]

Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123-31 [PubMed]

Pastoll H, White M, Nolan M (2012) Preparation of parasagittal slices for the investigation of dorsal-ventral organization of the rodent medial entorhinal cortex. J Vis Exp 6: -80 [PubMed]

Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463-5 [Journal] [PubMed]

Ray S, Naumann R, Burgalossi A, Tang Q, Schmidt H, Brecht M (2014) Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science 343:891-6 [Journal] [PubMed]

Reifenstein ET, Ebbesen CL, Tang Q, Brecht M, Schreiber S, Kempter R (2016) Cell-Type Specific Phase Precession in Layer II of the Medial Entorhinal Cortex. J Neurosci 36:2283-8 [Journal] [PubMed]

Rossant C, Kadir SN, Goodman DF, Schulman J, Hunter ML, Saleem AB, Grosmark A, Belluscio M, D (2016) Spike sorting for large, dense electrode arrays. Nat Neurosci 19:634-41 [Journal] [PubMed]

Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758-62 [PubMed]

Schwarz MK, Scherbarth A, Sprengel R, Engelhardt J, Theer P, Giese G (2015) Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS One 10:e0124650 [Journal] [PubMed]

Scorcioni R, Polavaram S, Ascoli GA (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 3:866-76 [PubMed]

Sun C, Kitamura T, Yamamoto J, Martin J, Pignatelli M, Kitch LJ, Schnitzer MJ, Tonegawa S (2015) Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proc Natl Acad Sci U S A 112:9466-71 [Journal] [PubMed]

Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10:1709-27 [Journal] [PubMed]

van der Linden S, Lopes da Silva FH (1998) Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro. Eur J Neurosci 10:1479-89 [PubMed]

Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407-18 [PubMed]

Ward J (1963) Hierarchical gropuing to optimize an objective function J Am Statist Assoc 58:236

Weitzel LR, Byers T, Allen J, Finlayson C, Helmke SM, Hokanson JE, Hunsucker SW, Murphy JR, N (2010) Discovery and verification of protein differences between Er positive/Her2/neu negative breast tumor tissue and matched adjacent normal breast tissue. Breast Cancer Res Treat 124:297-305 [Journal] [PubMed]

Yartsev MM, Witter MP, Ulanovsky N (2011) Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479:103-7 [PubMed]

Zheng C, Bieri KW, Trettel SG, Colgin LL (2015) The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus 25:924-38 [Journal] [PubMed]

(43 refs)