Brain networks simulators - a comparative study (Tikidji-Hamburyan et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222725
" ... In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. ... we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package ..."
Reference:
1 . Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA (2017) Software for Brain Network Simulations: A Comparative Study Front. Neuroinform.
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Brian; NEST; NEURON; GENESIS; Python;
Model Concept(s): Methods;
Implementer(s): Tikidji-Hamburyan, Ruben [ruben.tikidji.hamburyan at gmail.com] ;
/
NESTvsNEURONvsBRIAN
CaseStudy1-5000LIF
CaseStudy2-400HH
readme.html
                            

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA (2017) Software for Brain Network Simulations: A Comparative Study Front. Neuroinform.

References and models cited by this paper

References and models that cite this paper

Atallah BV, Scanziani M (2009) Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62:566-77 [PubMed]

Bower JM, Beeman D (1998) The Book Of Genesis: Exploring Realistic Neural Models With The General Neural Simulation System

Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637-42 [Journal] [PubMed]

   Adaptive exponential integrate-and-fire model (Brette & Gerstner 2005) [Model]

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J Comp Neurosci 23:349-98 [Journal] [PubMed]

   Networks of spiking neurons: a review of tools and strategies (Brette et al. 2007) [Model]

Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415-30 [Journal] [PubMed]

Cannon RC, O`Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol [Journal] [PubMed]

   Stochastic ion channels and neuronal morphology (Cannon et al. 2010) [Model]

Cantonnet F,Yao Y,Zahran M,El-Ghazawi T (2004) Productivity analysis of the UPC language Proceedings of the 18th International Parallel and Distributed Processing Symposium :1-254

Carnevale NT, Hines ML (2006) The NEURON Book

Cornelis H, Rodriguez AL, Coop AD, Bower JM (2012) Python as a federation tool for GENESIS 3.0. PLoS One 7:e29018 [Journal] [PubMed]

Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P (2008) PyNN: A Common Interface for Neuronal Network Simulators. Front Neuroinformatics 2:11-93 [PubMed]

Dayan P, Abbott LF (2001) Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems

Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049-70 [Journal] [PubMed]

   Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996) [Model]

Dongarra J,Graybill R,Harrod W,Lucas R,Lusk E,Luszczek P,et al (2008) Darpa’s {HPCS} program: history, models, tools, languages Advances in COMPUTERS, High Performance Computing, Volume 72 of Advances in Computers :1-100

Drewes R, Zou Q, Goodman PH (2009) Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator. Front Neuroinform 3:16 [Journal] [PubMed]

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO (2008) PyNEST: A Convenient Interface to the NEST Simulator. Front Neuroinformatics 2:12-74 [PubMed]

Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979-1001 [PubMed]

Ermentrout GB (2002) Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM)

Fitzhugh R (1961) Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J 1:445-66 [PubMed]

Gerstner W, Kistler WM (2002) Spiking neuron models

Gewaltig M-O, Diesmann M (2007) NEST (Neural Simulation Tool) Scholarpedia 2:1430

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6:e1000815 [Journal] [PubMed]

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219-35 [Journal] [PubMed]

Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in python. Front Neuroinformatics 2:5 [PubMed]

Goodman DF, Brette R (2009) The brian simulator. Front Neurosci 3:192-7 [PubMed]

Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A, Diesmann M (2015) A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Front Neuroinform 9:22 [Journal] [PubMed]

Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst Biol 6:1-19 [Journal] [PubMed]

Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward C (2005) SUNDIALS: Suite of nonlinear and differential-algebraic equation solvers ACM Trans Math Software 31:363-396

Hines M, Eichner H, Schuermann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors J Comput Neurosci 25(1):203-210 [Journal] [PubMed]

   Cell splitting in neural networks extends strong scaling (Hines et al. 2008) [Model]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Hines ML, Carnevale NT (2008) Translating network models to parallel hardware in NEURON J. Neurosci. Meth. 169:425-455 [Journal] [PubMed]

   Translating network models to parallel hardware in NEURON (Hines and Carnevale 2008) [Model]

Hines ML, Davison AP, Muller E (2009) NEURON and Python Frontiers in Neuroinformatics 3:1 [Journal] [PubMed]

   NEURON + Python (Hines et al. 2009) [Model]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Insel TR,Landis SC,Collins FS (2013) The NIH BRAIN initiative Science 340:687-688 [Journal]

Iyer R,Tullsen D (2015) Heterogeneous computing [guest editors’ introduction] IEEE Micro 35:4-5 [Journal]

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569-72 [Journal] [PubMed]

   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]

Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8:1667-76 [Journal] [PubMed]

   CA1 pyramidal neuron synaptic integration (Jarsky et al. 2005) [Model]

Kayraklioglu E,El-Ghazawi T,Bozkus Z (2015) Accelerating brain simulations on graphical processing units IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM) :556-560

Koch C, Segev I (1998) Methods In Neuronal Modeling

Kumbhar P,Hines M,Ovcharenko A,Mallon DA,King J,Sainz F,et al (2016) Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations :363-380

Lind RK,Vairavan K (1989) An experimental investigation of software metrics and their relationship to software development effort IEEE Trans. Softw. Eng. 15:649-653 [Journal]

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363-6 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep, Superficial; Aspiny, Stellate (Mainen and Sejnowski 1996) [Model]

Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153-60 [Journal] [PubMed]

   [241 reconstructed morphologies on NeuroMorpho.Org]

Markram H (2012) The human brain project Sci. Am. 306:50-55 [Journal]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel Network Simulations with NEURON. J Comp Neurosci 21:110-119 [Journal] [PubMed]

   Parallel network simulations with NEURON (Migliore et al 2006) [Model]

Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193-213 [Journal] [PubMed]

   Morris-Lecar model of the barnacle giant muscle fiber (Morris, Lecar 1981) [Model]

Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M, Davison AP (2015) Python in neuroscience. Front Neuroinform 9:11 [Journal] [PubMed]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Plotnikov D,Blundell I,Ippen T,Eppler JM,Morrison A,Rumpe B (2016) Nestml: a modeling language for spiking neurons Modellierung Conference Volume 254 of LNI, Karlsruhe :93-108

Rinzel J, Ermentrout B (1998) Analysis of neural excitability and oscillations. Methods In Neuronal Modeling 2nd Edition, Segev I, Koch C, ed. pp.251

Sivagnanam S,Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone ME, Carnevale NT (2013) Introducing the Neuroscience Gateway 2013 IWSG, volume 993 of CEUR Workshop Proceedings, CEUR-WS.org, [Journal]

Soltesz I, Staley K (2008) Computational neuroscience in epilepsy

Tikidji-Hamburyan RA, El-Ghazawi TA, Triplett JW (2016) Novel Models of Visual Topographic Map Alignment in the Superior Colliculus PLoS Computational Biology 12(12):e1005315 [Journal] [PubMed]

   Models of visual topographic map alignment in the Superior Colliculus (Tikidji-Hamburyan et al 2016) [Model]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC (2015) Resonant Interneurons Can Increase Robustness of Gamma Oscillations. J Neurosci 35:15682-95 [Journal] [PubMed]

   PIR gamma oscillations in network of resonators (Tikidji-Hamburyan et al. 2015) [Model]

Tikidji-Hamburyan RA,Markin SN (2008) Neurocad – the modular simulation environment for effective biologically plausible neuromodeling BMC Neurosci. 9:91 [Journal]

Vitay J, Dinkelbach HÜ, Hamker FH (2015) ANNarchy: a code generation approach to neural simulations on parallel hardware. Front Neuroinform 9:19 [Journal] [PubMed]

Yavuz E, Turner J, Nowotny T (2016) GeNN: a code generation framework for accelerated brain simulations. Sci Rep 6:18854 [Journal] [PubMed]

Zenke F, Gerstner W (2014) Limits to high-speed simulations of spiking neural networks using general-purpose computers. Front Neuroinform 8:76 [Journal] [PubMed]

(58 refs)