Distance-dependent synaptic strength in CA1 pyramidal neurons (Menon et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222726
Menon et al. (2013) describes the experimentally-observed variation in synaptic AMPA and NMDA conductance as a function of distance from the soma. This model explores the effect of this variation on somatic EPSPs and dendritic spike initiation, as compared to the case of uniform AMPA and NMDA conductance.
Reference:
1 . Menon V, Musial TF, Liu A, Katz Y, Kath WL, Spruston N, Nicholson DA (2013) Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. Neuron 80:1451-63 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I A; I K; I Na, slow inactivation;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Menon, Vilas [vilasmenon2008 at u dot northwestern dot edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; NMDA; I A; I K; I Na, slow inactivation;
/
MenonEtAl2013
README.txt
dv.mod
ih_new.mod
kadist.mod *
kaprox.mod *
kdrca1.mod *
leakcond.mod *
nafast2.mod
naslowcond2.mod
nmda.mod
spines.mod *
synampa.mod *
vmax.mod
vmax2.mod
vmaxlast.mod
vms.mod
code_membrane.hoc
code_objects.hoc
code_point_processes.hoc
code_routine_for_runs.hoc
code_run_multiple_spines_on_branch.hoc
code_run_single_spine.hoc
code_synapse_array_setup.hoc
code_synapse_setup.hoc
mosinit.hoc
ri06.nrn *
simulated_axon.nrn *
spinearraygeom.nrn
spinegeom.nrn
                            
Code to run simulations outlined in Menon, Musial, Liu, Katz, Kath, Spruston, Nicholson (2013)

This code can be used to run two sets of simulations, each corresponding to a master .hoc file:
1. code_run_single_spine.hoc
This run places a synapse on a spine at every location along the basal dendritic tree (using 10-micron segments), and calculates the maximum deflection in voltage in the spine, local dendritic segment, and soma, as well as the peak inward current and total charge flowing through the synapse. 
The code cycles through placing a single nonperforated synapse and a single perforated synapse. The latter are run with and without the experimentally observed AMPA and NMDA scaling, in all combinations. 

2. code_run_multiple_spines_on_branch.hoc
This run sequentially places 1-20 synapses on a single basal branch, and calculates the maximum voltage deflection locally and at the soma. Because the location of these synapses is chosen stochastically, the simulation runs 50 times. The code runs multiple flavors of simulations, reflecting either uniform synapse location and strength, or experimentally observed synapse location distributions (for nonperforated synapses) and strength (for perforated synapses). Triggering of local dendritic spikes is clearly observable as a nonlinear change in the maximum voltage deflection in the dendrite of interest.

Both sets of simulations use the parallel context in NEURON, and can be run specifying the number of parallel processes to use. Since this is trivially parallelizable (each simulation runs separately), there are no concerns with optimal distribution of tasks to processers. The code will also run as-is on a single processor.

Menon V, Musial TF, Liu A, Katz Y, Kath WL, Spruston N, Nicholson DA (2013) Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. Neuron 80:1451-63[PubMed]

References and models cited by this paper

References and models that cite this paper

Amaral D, Lavenex P (2006) Hippocampal neuroanatomy The Hippocampus Book, Andersen P:Morris R:Amaral D:Bliss T:O`Keefe J, ed. pp.37

Bloodgood BL, Giessel AJ, Sabatini BL (2009) Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biol 7:e1000190-3 [PubMed]

Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381-6 [Journal] [PubMed]

Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47-67 [PubMed]

Branco T, Hausser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20:494-502 [PubMed]

Desmond NL, Scott CA, Jane JA, Levy WB (1994) Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum-moleculare of the rat. Hippocampus 4:594-600 [PubMed]

Engelhardt JK, Morales FR, Chase MH (1998) An alternative method for the analysis of neuron passive electrical data which uses integrals of voltage transients. J Neurosci Methods 81:131-8 [PubMed]

Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24:11046-11056 [Journal] [PubMed]

   CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004) [Model]

Geinisman Y (2000) Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10:952-62 [PubMed]

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69-82 [Journal] [PubMed]

   [22 reconstructed morphologies on NeuroMorpho.Org]
   Voltage attenuation in CA1 pyramidal neuron dendrites (Golding et al 2005) [Model]

Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21:1189-200 [PubMed]

Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326-31 [PubMed]

Greenough WT, Bailey CH (1988) Anatomy of a memory: convergence of results across a diversity of tests Trends Neurosci 11:142-147

Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491:599-602 [PubMed]

Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739-44 [PubMed]

Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]

Iansek R, Redman SJ (1973) The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. J Physiol 234:665-88 [PubMed]

Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N (2009) Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron 63:171-7 [Journal] [PubMed]

   A two-stage model of dendritic integration in CA1 pyramidal neurons (Katz et al. 2009) [Model]

Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291-307 [PubMed]

Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181-90 [PubMed]

Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895-903 [PubMed]

   CA1 pyramidal neuron: Synaptic Scaling (Magee, Cook 2000) [Model]

Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527-40 [PubMed]

   [18 reconstructed morphologies on NeuroMorpho.Org]

Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206-14 [Journal] [PubMed]

   Dendritic Na+ spike initiation and backpropagation of APs in active dendrites (Nevian et al. 2007) [Model]

Nicholson DA, Geinisman Y (2009) Axospinous synaptic subtype-specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons. J Comp Neurol 512:399-418 [PubMed]

Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, Geinisman Y (2006) Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron 50:431-42 [Journal] [PubMed]

Poirazi P, Brannon T, Mel BW (2003b) Pyramidal Neuron as Two-Layer Neural Network. Neuron 37:989-999 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621-7 [Journal] [PubMed]

   CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003) [Model]

RALL W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491-527 [PubMed]

Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648-87 [PubMed]

Remy S, Csicsvari J, Beck H (2009) Activity-dependent control of neuronal output by local and global dendritic spike attenuation. Neuron 61:906-16 [PubMed]

Remy S, Spruston N (2007) Dendritic spikes induce single-burst long-term potentiation. Proc Natl Acad Sci U S A 104:17192-7 [PubMed]

Rinzel J, Rall W (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophys J 14:759-90 [PubMed]

Smith MA, Ellis-Davies GC, Magee JC (2003) Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 548:245-58 [PubMed]

Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206-21 [PubMed]

Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501-10 [PubMed]

   [13 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep: attenuation in dendrites (Stuart, Spruston 1998) [Model]

Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26:147-54 [PubMed]

(36 refs)