Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223649
" ... We hypothesized that currents are grouped into distinct modules that shape specific neuronal characteristics or signatures, such as resting potential, sub-threshold oscillations, and spiking waveforms, for several classes of neurons. For such a grouping to occur, the currents within one module should have minimal functional interference with currents belonging to other modules. This condition is satisfied if the gating functions of currents in the same module are grouped together on the voltage axis; in contrast, such functions are segregated along the voltage axis for currents belonging to different modules. We tested this hypothesis using four published example case models and found it to be valid for these classes of neurons. ..."
Reference:
1 . Alturki A, Feng F, Nair A, Guntu V, Nair SS (2016) Distinct current modules shape cellular dynamics in model neurons. Neuroscience 334:309-331 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus; Amygdala;
Cell Type(s): Abstract single compartment conductance based cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Activity Patterns; Oscillations; Methods; Olfaction;
Implementer(s):
/
AlturkiEtAl2016
2_Pospischil
Segregated
cadecay_destexhe.mod *
HH_traub.mod
IL_gutnick.mod
IM_cortex.mod
IT_huguenard.mod
demo_IN_FS.hoc *
demo_PY_IB.hoc *
demo_PY_IBR.hoc *
demo_PY_LTS.hoc *
demo_PY_RS.hoc *
mosinit.hoc *
rundemo.hoc *
sIN_template *
sPY_template *
sPYb_template *
sPYbr_template *
sPYr_template *
                            
/*--------------------------------------------------------------
	TEMPLATE FILE FOR REGULAR-SPIKING CORTICAL PYRAMIDAL CELL
	---------------------------------------------------------

	One compartment model and currents derived from:

   Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., 
   Bal, T., Fregnac, Y., Markram, H. and Destexhe, A.
   Minimal Hodgkin-Huxley type models for different classes of
   cortical and thalamic neurons.
   Biological Cybernetics 99: 427-441, 2008.

	This model was inspired from:

   McCormick, D.A., Wang, Z. and Huguenard, J. Neurotransmitter 
   control of neocortical neuronal activity and excitability. 
   Cerebral Cortex 3: 387-398, 1993.

	- one compartment model
	- passive
	- HH: Traub
	- IM: m format

	Alain Destexhe, CNRS, 2008

--------------------------------------------------------------*/


print " "
print " << defining template for one-compartment sPY cell >> "
print " "


begintemplate sPY		// create a new template object
public soma

create soma[1]

proc init() { local v_potassium, v_sodium

  v_potassium = -100		// potassium reversal potential 
  v_sodium = 50			// sodium reversal potential 

  soma {
	Ra = 100		// geometry 
	nseg = 1
	diam = 96
	L = 96			// so that area is about 29000 um2
	cm = 1

	insert pas		// leak current 
	e_pas = -70
	g_pas = 0.0001		// Rin = 34 Meg

	// conversion with McC units: 
	// g(S/cm2) = g(nS)*1e-9/29000e-8
	//	    = g(nS) * 3.45e-6

	insert hh2		// Hodgin-Huxley INa and IK 
	ek = v_potassium
	ena = v_sodium
	vtraub_hh2 = -55	// Resting Vm, BJ was -55
	gnabar_hh2 = 0.05	// McCormick=15 muS, thal was 0.09
	gkbar_hh2 = 0.005	// spike duration of pyr cells


	insert im		// M current 
	taumax_im = 1000
	gkbar_im = 7e-5		// Diego's IM (copyrighted)

//	insert iahp
//	alpha_iahp = 1.25e9
//	beta_iahp = 0.001
//	gkbar_iahp = 1.7e-5	// McCormick=5 nS

//	insert cad		// calcium decay
//	depth_cad = 1		// McCormick= 0.1 um
//	taur_cad = 5		// McCormick=1 ms !!!
//	cainf_cad = 2.4e-4	// McCormick=0
//	kt_cad = 0		// no pump
  }

  print " "
  print "<< sPY: passive, INa, IK, IM inserted >>"
  print " "

}
endtemplate sPY




Loading data, please wait...