Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223891
" ... Here, combining data from fluorescence-targeted dendritic recordings and Ca2+ imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS (Low Threshold Spike) generation is established. ..." " ... Using dendritic recording, 2-photon glutamate uncaging, and computational modeling, we investigated how rat dorsal lateral geniculate nucleus thalamocortical neurons integrate excitatory corticothalamic feedback. ..."
References:
1 . Connelly WM, Crunelli V, Errington AC (2016) Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites. J Neurosci 36:3735-54 [PubMed]
2 . Connelly WM, Crunelli V, Errington AC (2015) The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. J Neurosci 35:15505-22 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s): I T low threshold; I Calcium; I h;
Gap Junctions:
Receptor(s): NMDA; AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Active Dendrites; Action Potential Initiation; Calcium dynamics;
Implementer(s): Connelly, William [connelly.bill at gmail.com];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; AMPA; NMDA; I T low threshold; I h; I Calcium; Glutamate;
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
: Modified by William Connelly, Cardiff University 2012 for CVODE and threadsafe

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX hh2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gnabar, gkbar, vtraub, gkbetamod, gkalphamod
	RANGE m_inf, h_inf, n_inf
	RANGE tau_m, tau_h, tau_n
	RANGE m_exp, h_exp, n_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar	= .003 	(mho/cm2)
	gkbar	= .005 	(mho/cm2)
	gkbetamod = 1
  gkalphamod = 1

	ena	= 50	(mV)
	ek	= -90	(mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
	vtraub	= -63	(mV)
}

STATE {
	m h n
}

ASSIGNED {
	ina	(mA/cm2)
	ik	(mA/cm2)
	il	(mA/cm2)
	m_inf
	h_inf
	n_inf
	tau_m
	tau_h
	tau_n
	m_exp
	h_exp
	n_exp
	tadj
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ina = gnabar * m*m*m*h * (v - ena)
	ik  = gkbar * n*n*n*n * (v - ek)
}


DERIVATIVE states {   : exact Hodgkin-Huxley equations
	evaluate_fct(v)
	m' = (m_inf - m) / tau_m
	h' = (h_inf - h) / tau_h
	n' = (n_inf - n) / tau_n
}

:PROCEDURE states() {	: exact when v held constant
:	evaluate_fct(v)
:	m = m + m_exp * (m_inf - m)
:	h = h + h_exp * (h_inf - h)
:	n = n + n_exp * (n_inf - n)
:	VERBATIM
:	return 0;
:	ENDVERBATIM
:}

UNITSOFF
INITIAL {
	m = 0
	h = 0
	n = 0
:
:  Q10 was assumed to be 3 for both currents
:
: original measurements at roomtemperature?

	tadj = 3.0 ^ ((celsius-36)/ 10 )
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub : convert to traub convention

	a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
	b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
	tau_m = 1 / (a + b) / tadj
	m_inf = a / (a + b)

	a = 0.128 * exp((17-v2)/18)
	b = 4 / ( 1 + exp((40-v2)/5) )
	tau_h = 1 / (a + b) / tadj
	h_inf = a / (a + b)

	a = gkalphamod * 0.032 * (15-v2) / ( exp((15-v2)/5) - 1)
	b = gkbetamod * 0.5 * exp((10-v2)/40)
	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	m_exp = 1 - exp(-dt/tau_m)
	h_exp = 1 - exp(-dt/tau_h)
	n_exp = 1 - exp(-dt/tau_n)
}

UNITSON

Loading data, please wait...