Pyramidal neurons with mutated SCN2A gene (Nav1.2) (Ben-Shalom et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223955
Model of pyramidal neurons that either hyper or hypo excitable due to SCN2A mutations. Mutations are taken from patients with ASD or Epilepsy
Reference:
1 . Ben-Shalom R, Keeshen CM,Berrios KN, An JY, Sanders SJ, Bender KJ (2017) Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures Biological Psychiatry, epub before print
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 pyramidal corticothalamic L6 cell;
Channel(s): I Na,t; I Sodium; I K;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.2 SCN2A;
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s):
Implementer(s): Ben-Shalom, Roy [bens.roy at gmail.com];
Search NeuronDB for information about:  Neocortex V1 pyramidal corticothalamic L6 cell; I Na,t; I K; I Sodium;
/
SCN2A_ASD
Excitability
AdultE1211K
readme.txt *
Cad.mod *
CaH.mod *
CaT.mod *
charge.mod *
h.mod *
Kca.mod *
Kv.mod *
Kv1_axonal.mod *
Kv7.mod *
na8st.mod *
na8st1.mod *
nax8st.mod *
28_04_10_num19.hoc *
Cell parameters.hoc *
charge.hoc *
mosinit.hoc *
scn2aExps.hoc
                            
COMMENT

kv.mod

Potassium channel, Hodgkin-Huxley style kinetics
Kinetic rates based roughly on Sah et al. and Hamill et al. (1991)

Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu
	
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX Kv
	USEION k READ ek WRITE ik
	RANGE n, gk, gbar
	RANGE ninf, ntau
	GLOBAL Ra, Rb
	GLOBAL q10, temp, tadj, vmin, vmax
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

PARAMETER {
	gbar = 5   	(pS/um2)	: 0.03 mho/cm2
	v 		(mV)
								
	tha  = 25	(mV)		: v 1/2 for inf
	qa   = 9	(mV)		: inf slope		
	
	Ra   = 0.02	(/ms)		: max act rate
	Rb   = 0.002	(/ms)		: max deact rate	

	dt		(ms)
	celsius		(degC)
	temp = 23	(degC)		: original temp 	
	q10  = 2.3			: temperature sensitivity

	vmin = -120	(mV)
	vmax = 100	(mV)
} 


ASSIGNED {
	a		(/ms)
	b		(/ms)
	ik 		(mA/cm2)
	gk		(pS/um2)
	ek		(mV)
	ninf
	ntau (ms)	
	tadj
}
 

STATE { n }

INITIAL { 
	trates(v)
	n = ninf
}

BREAKPOINT {
        SOLVE states
	gk = tadj*gbar*n
	ik = (1e-4) * gk * (v - ek)
} 

LOCAL nexp

PROCEDURE states() {   :Computes state variable n 
        trates(v)      :             at the current v and dt.
        n = n + nexp*(ninf-n)
        VERBATIM
        return 0;
        ENDVERBATIM
}

PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL tinc
        TABLE ninf, nexp
	DEPEND dt, celsius, temp, Ra, Rb, tha, qa
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable_hh == 1

        tadj = q10^((celsius - temp)/10)

        tinc = -dt * tadj
        nexp = 1 - exp(tinc/ntau)
}


PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.

        a = Ra * (v - tha) / (1 - exp(-(v - tha)/qa))
        b = -Rb * (v - tha) / (1 - exp((v - tha)/qa))
        ntau = 1/(a+b)
	ninf = a*ntau
}


Ben-Shalom R, Keeshen CM,Berrios KN, An JY, Sanders SJ, Bender KJ (2017) Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures Biological Psychiatry, epub before print

References and models cited by this paper

References and models that cite this paper

Aceti M, Creson TK, Vaissiere T, Rojas C, Huang WC, Wang YX, Petralia RS, Page DT, Miller CA, (2015) Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry 77:805-15 [Journal] [PubMed]

Altmüller J, Motameny S, Becker C, Thiele H, Chatterjee S, Wollnik B, Nürnberg P (2016) A systematic comparison of two new releases of exome sequencing products: the aim of use determines the choice of product. Biol Chem 397:791-801 [Journal] [PubMed]

Anastasiades PG, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, Miesenböck G, Bu (2016) GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun 7:10584 [Journal] [PubMed]

Bender KJ, Trussell LO (2012) The physiology of the axon initial segment. Annu Rev Neurosci 35:249-65 [Journal] [PubMed]

Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G (2003) Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 23:2306-13 [PubMed]

Catterall WA, Kalume F, Oakley JC (2010) NaV1.1 channels and epilepsy. J Physiol 588:1849-59 [Journal] [PubMed]

Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D (2015) Genotype to phenotype relationships in autism spectrum disorders. Nat Neurosci 18:191-8 [Journal] [PubMed]

De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Wal (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209-15 [Journal] [PubMed]

Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W, Keren (2009) Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 46:183-91 [Journal] [PubMed]

Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75:556-71 [PubMed]

Gazina EV, Leaw BT, Richards KL, Wimmer VC, Kim TH, Aumann TD, Featherby TJ, Churilov L, Hamm (2015) 'Neonatal' Nav1.2 reduces neuronal excitability and affects seizure susceptibility and behaviour. Hum Mol Genet 24:1457-68 [Journal] [PubMed]

Hallermann S, de Kock CP, Stuart GJ, Kole MH (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons Nat Neurosci. 15(7):1007-14 [Journal] [PubMed]

   State and location dependence of action potential metabolic cost (Hallermann et al., 2012) [Model]

Howell KB, McMahon JM, Carvill GL, Tambunan D, Mackay MT, Rodriguez-Casero V, Webster R, Clar (2015) SCN2A encephalopathy: A major cause of epilepsy of infancy with migrating focal seizures. Neurology 85:958-66 [Journal] [PubMed]

Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996-1002 [Journal] [PubMed]

   Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009) [Model]

Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, V (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216-21 [Journal] [PubMed]

Kamiya K, Kaneda M, Sugawara T, Mazaki E, Okamura N, Montal M, Makita N, Tanaka M, Fukushima (2004) A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J Neurosci 24:2690-8 [Journal] [PubMed]

Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178-86 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Na+ channel dependence of AP initiation in cortical pyramidal neuron (Kole et al. 2008) [Model]

Kole MH, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235-47 [PubMed]

Lauxmann S, Boutry-Kryza N, Rivier C, Mueller S, Hedrich UB, Maljevic S, Szepetowski P, Lerch (2013) An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na(+) current. Epilepsia 54:e117-21 [Journal] [PubMed]

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285-91 [Journal] [PubMed]

Li T, Tian C, Scalmani P, Frassoni C, Mantegazza M, Wang Y, Yang M, Wu S, Shu Y (2014) Action potential initiation in neocortical inhibitory interneurons. PLoS Biol 12:e1001944 [Journal] [PubMed]

Liao Y, Deprez L, Maljevic S, Pitsch J, Claes L, Hristova D, Jordanova A, Ala-Mello S, Bellan (2010) Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133:1403-14 [Journal] [PubMed]

Martínez-Hernández J, Ballesteros-Merino C, Fernández-Alacid L, Nicolau JC, Aguado C, Luján R (2013) Polarised localisation of the voltage-gated sodium channel Na(v)1.2 in cerebellar granule cells. Cerebellum 12:16-26 [Journal] [PubMed]

Misra SN, Kahlig KM, George AL (2008) Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia 49:1535-45 [Journal] [PubMed]

Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440:1060-3 [PubMed]

Nelson SB, Valakh V (2015) Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 87:684-98 [Journal] [PubMed]

Noebels J (2015) Pathway-driven discovery of epilepsy genes. Nat Neurosci 18:344-50 [Journal] [PubMed]

Ogiwara I, Ito K, Sawaishi Y, Osaka H, Mazaki E, Inoue I, Montal M, Hashikawa T, Shike T, Fuj (2009) De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology 73:1046-53 [Journal] [PubMed]

Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S, Yanagaw (2007) Na(v)1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 27:5903-14 [PubMed]

Osorio N, Alcaraz G, Padilla F, Couraud F, Delmas P, Crest M (2005) Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J Physiol 569:801-16 [PubMed]

Petrovski S, Gussow AB, Wang Q, Halvorsen M, Han Y, Weir WH, Allen AS, Goldstein DB (2015) The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity. PLoS Genet 11:e1005492 [Journal] [PubMed]

Philpot BD, Thompson CE, Franco L, Williams CA (2011) Angelman syndrome: advancing the research frontier of neurodevelopmental disorders. J Neurodev Disord 3:50-6 [Journal] [PubMed]

Planells-Cases R, Caprini M, Zhang J, Rockenstein EM, Rivera RR, Murre C, Masliah E, Montal M (2000) Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. Biophys J 78:2878-91 [Journal] [PubMed]

Rees E, Walters JT, Georgieva L, Isles AR, Chambert KD, Richards AL, Mahoney-Davies G, Legge (2014) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204:108-14 [Journal] [PubMed]

Saha RN, Dudek SM (2008) Action potentials: to the nucleus and beyond. Exp Biol Med (Maywood) 233:385-93 [Journal] [PubMed]

Sanders SJ (2015) First glimpses of the neurobiology of autism spectrum disorder. Curr Opin Genet Dev 33:80-92 [Journal] [PubMed]

Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, Murtha MT, Bal VH, Bis (2015) Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 87:1215-33 [Journal] [PubMed]

Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLu (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237-41 [Journal] [PubMed]

Scalmani P, Rusconi R, Armatura E, Zara F, Avanzini G, Franceschetti S, Mantegazza M (2006) Effects in neocortical neurons of mutations of the Na(v)1.2 Na+ channel causing benign familial neonatal-infantile seizures. J Neurosci 26:10100-9 [Journal] [PubMed]

Schwarz N, Hahn A, Bast T, Müller S, Löffler H, Maljevic S, Gaily E, Prehl I, Biskup S, Joens (2016) Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J Neurol 263:334-43 [Journal] [PubMed]

Shepherd GM, Katz DM (2011) Synaptic microcircuit dysfunction in genetic models of neurodevelopmental disorders: focus on Mecp2 and Met. Curr Opin Neurobiol 21:827-33 [Journal] [PubMed]

Stuhmer W, Methfessel C, Sakmann B, Noda M, Numa S (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J 14:131-8 [PubMed]

Sugawara T, Tsurubuchi Y, Agarwala KL, Ito M, Fukuma G, Mazaki-Miyazaki E, Nagafuji H, Noda M (2001) A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 98:6384-9 [Journal] [PubMed]

Tian C, Wang K, Ke W, Guo H, Shu Y (2014) Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front Cell Neurosci 8:297 [Journal] [PubMed]

Tuncdemir SN, Wamsley B, Stam FJ, Osakada F, Goulding M, Callaway EM, Rudy B, Fishell G (2016) Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron 89:521-35 [Journal] [PubMed]

Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L, Fertuzinhos (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155:997-1007 [Journal] [PubMed]

Xu R, Thomas EA, Jenkins M, Gazina EV, Chiu C, Heron SE, Mulley JC, Scheffer IE, Berkovic SF, (2007) A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel. Mol Cell Neurosci 35:292-301 [PubMed]

Xu X, Wells AB, O'Brien DR, Nehorai A, Dougherty JD (2014) Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci 34:1420-31 [Journal] [PubMed]

Yamagishi T, Xiong W, Kondratiev A, Vélez P, Méndez-Fitzwilliam A, Balser JR, Marbán E, Tomas (2009) Novel molecular determinants in the pore region of sodium channels regulate local anesthetic binding. Mol Pharmacol 76:861-71 [Journal] [PubMed]

Zhu G, Zhang Y, Xu H, Jiang C (1998) Identification of endogenous outward currents in the human embryonic kidney (HEK 293) cell line. J Neurosci Methods 81:73-83 [PubMed]

(50 refs)