CRH modulates excitatory transmission and network physiology in hippocampus (Gunn et al. 2017)

 Download zip file 
Help downloading and running models
Accession:225906
This model simulates the effects of CRH on sharp waves in a rat CA1/CA3 model. It uses the frequency of the sharp waves as an output of the network.
Reference:
1 . Taxidis J, Coombes S, Mason R, Owen MR (2012) Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus 22:995-1017 [PubMed]
2 . Gunn BG, Cox CD, Chen Y, Frotscher M, Gall CM, Baram TZ, Lynch G (2017) The Endogenous Stress Hormone CRH Modulates Excitatory Transmission and Network Physiology in Hippocampus. Cereb Cortex :1-17 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Connectionist Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Abstract Wang-Buzsaki neuron; Pinsky-Rinzel CA1/3 pyramidal cell ;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: Brian; Python;
Model Concept(s): Brain Rhythms;
Implementer(s): Cox, Conor [cdcox1 at gmail.com];
Search NeuronDB for information about:  Gaba; Glutamate;
  
This is the modelling code in Brian2 and python for:
The endogenous stress hormone CRH modulates excitatory transmission and network physiology in hippocampus.
Gunn B.G, Cox C.D, Chen Y , Frotscher, M, Gall C.M, Baram T.Z, and Lynch G 
It was written by Conor D Cox
The figures were generated by serverizing the code (not included here for simplicity)
Pyramidal cells were modelled by the two-compartment Pinsky-Rinzel model (Pinsky & Rinzel, 1994) adapted from ModelDB 
accession no 35358; Migliore et al, 2003) which was written in Neuron.
Interneurons were modelled on the single-compartment Wang-Buzsaki model (Wang & Buzsaki, 1996) found on the Brian simulator website.
This model is an implementation of: 
Taxidis J, Coombes S, Mason R & Owen MR. 2012. Modeling sharp wave-ripple
complexes through a CA3-CA1 network model with chemical synapses. Hippocampus 22, 995-1017.

There are two files here one which contains the DG model one which contains a current injection.
SWR_DG_and_syn_str_inc_modelling_code.py <-DG
SWR_input_amps_modelling_code.py<- Current
Code should be set in high RAM mode. the StateMonitors use approx 1 GB of RAM per second of simulation.
These lines can be commented in and out but related figures should also be turned off.
Follow further updates on author's github here: https://github.com/cdcox
https://github.com/cdcox/SWR_modelling_code for the specific modelling code.

Taxidis J, Coombes S, Mason R, Owen MR (2012) Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus 22:995-1017[PubMed]

References and models cited by this paper

References and models that cite this paper

Ali AB, Deuchars J, Pawelzik H, Thomson AM (1998) CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J Physiol 507 ( Pt 1):201-17 [PubMed]

Andersen P, Morris R, Amaral D, Bliss T, O`Keefe J (2006) The hippocampus book

Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687-98 [PubMed]

   Dentate Basket Cell: spatial summation of inhibitory synaptic inputs (Bartos et al 2001) [Model]

Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99:13222-7 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Bartos et al 2002) [Model]

Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45-56 [PubMed]

Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions. Learn Mem 11:697-704 [Journal] [PubMed]

Behrens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8:1560-7 [Journal] [PubMed]

Bernard C, Wheal HV (1994) Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus. Hippocampus 4:497-529 [PubMed]

Both M, Bähner F, von Bohlen und Halbach O, Draguhn A (2008) Propagation of specific network patterns through the mouse hippocampus. Hippocampus 18:899-908 [Journal] [PubMed]

Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415-30 [Journal] [PubMed]

Buhl EH, Cobb SR, Halasy K, Somogyi P (1995) Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur J Neurosci 7:1989-2004 [PubMed]

Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368:823-8 [PubMed]

Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242-52 [PubMed]

Buzsaki G (2006) Rhythms of the Brain

Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025-7 [PubMed]

Cannon RC, Wheal HV, Turner DA (1999) Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J Comp Neurol 413:619-33 [PubMed]

Chow CC, White JA, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J Comput Neurosci 5:407-20 [Journal] [PubMed]

Chrobak JJ, Buzsaki G (1996) High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 16:3056-66 [PubMed]

Cobb SR, Halasy K, Vida I, Nyiri G, Tamas G, Buhl EH, Somogyi P (1997) Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79:629-48 [PubMed]

Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89:2707-25 [Journal] [PubMed]

Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsaki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J Neurosci 19:274-87 [PubMed]

Csicsvari J, Hirase H, Mamiya A, Buzsaki G (2000) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28:585-94 [PubMed]

Cutsuridis V, Cobb S, Graham BP (2008) Encoding and retrieval in a CA1 microcircuit model of the hippocampus LNCS 18th International Conference on Artificial Neural Networks 5164:238-247

Cutsuridis V, Cobb S, Graham BP (2009) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423-46 [Journal] [PubMed]

   Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009) [Model]

Cutsuridis V, Hasselmo M (2010) Dynamics and function of a ca1 model of the hippocampus during theta and ripples Artificial Neural Networks-ICANN 2010, Part I, LNCS 6352, Diamantaras K, Duch W, Iliadis LS, ed. pp.230

Cutsuridis V, Wenneckers T (2009) Hippocampus, microcircuits and associative memory Neural Netw 22(8):1120-8 [Journal] [PubMed]

Cutsuridis V,Graham B,Cobb S,Vida I (2010) Hippocampal microcircuits: a computational modeler's resource book

Deuchars J, Thomson AM (1996) CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74:1009-18 [PubMed]

Diba K, Buzsáki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10:1241-2 [Journal] [PubMed]

Draguhn A, Traub RD, Schmitz D, Jefferys JG (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189-92 [PubMed]

Ellender TJ, Nissen W, Colgin LL, Mann EO, Paulsen O (2010) Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. J Neurosci 30:5979-91 [PubMed]

Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci U S A 95:1259-64 [PubMed]

Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680-3 [PubMed]

Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347-470 [PubMed]

Gage PW, Robertson B (1985) Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus. Br J Pharmacol 85:675-81 [PubMed]

Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193-204 [PubMed]

Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in python. Front Neuroinformatics 2:5 [PubMed]

Gulyas AI, Miles R, Hajos N, Freund TF (1993) Precision and variability in postsynaptic target selection of inhibitory cells in the hippocampal CA3 region. Eur J Neurosci 5:1729-51 [PubMed]

Gulyas AI, Miles R, Sik A, Toth K, Tamamaki N, Freund TF (1993) Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366:683-7 [PubMed]

Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsaki G (2006) Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52:871-82 [PubMed]

King C, Henze DA, Leinekugel X, Buzsáki G (1999) Hebbian modification of a hippocampal population pattern in the rat. J Physiol 521 Pt 1:159-67 [PubMed]

Kirson ED, Yaari Y, Perouansky M (1998) Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Br J Pharmacol 124:1607-14 [Journal] [PubMed]

Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844-8 [PubMed]

Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53-7 [PubMed]

Knowles WD, Schwartzkroin PA (1981) Local circuit synaptic interactions in hippocampal brain slices. J Neurosci 1:318-22 [PubMed]

Krasowski MD, Harrison NL (1999) General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55:1278-303

Lanthorn T, Storm J, Andersen P (1984) Current-to-frequency transduction in CA1 hippocampal pyramidal cells: slow prepotentials dominate the primary range firing. Exp Brain Res 53:431-43 [PubMed]

Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183-94 [PubMed]

Li XG, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339:181-208 [PubMed]

MacVicar BA, Dudek FE (1980) Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res 184:220-3 [PubMed]

Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319-31 [PubMed]

Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A (2002) Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol 541:521-8 [PubMed]

Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873-87 [PubMed]

Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J Physiol 428:61-77 [PubMed]

Miles R, Toth K, Gulyas AI, Hajos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815-23 [PubMed]

Miles R, Traub RD, Wong RK (1988) Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. J Neurophysiol 60:1481-96 [Journal] [PubMed]

Miles R, Wong RK (1986) Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J Physiol 373:397-418 [PubMed]

Miles R, Wong RK (1987) Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. J Physiol 388:611-29 [PubMed]

Nimmrich V, Maier N, Schmitz D, Draguhn A (2005) Induced sharp wave-ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. J Physiol 563:663-70 [PubMed]

Nishikawa K, MacIver MB (2000) Membrane and synaptic actions of halothane on rat hippocampal pyramidal neurons and inhibitory interneurons. J Neurosci 20:5915-23 [PubMed]

O'Neill J, Senior T, Csicsvari J (2006) Place-selective firing of CA1 pyramidal cells during sharp wave-ripple network patterns in exploratory behavior. Neuron 49:143-55 [PubMed]

Perouansky M, Baranov D, Salman M, Yaari Y (1995) Effects of halothane on glutamate receptor-mediated excitatory postsynaptic currents. A patch-clamp study in adult mouse hippocampal slices. Anesthesiology 83:109-19 [PubMed]

Perouansky M, Kirson ED, Yaari Y (1996) Halothane blocks synaptic excitation of inhibitory interneurons. Anesthesiology 85:1431-8; discussion 29A [PubMed]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709-20 [PubMed]

Salin PA, Prince DA (1996) Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. J Neurophysiol 75:1589-600 [PubMed]

Sayer RJ, Friedlander MJ, Redman SJ (1990) The time course and amplitude of EPSPs evoked at synapses between pairs of CA3-CA1 neurons in the hippocampal slice. J Neurosci 10:826-36 [PubMed]

Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heine (2001) Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31:831-40 [PubMed]

Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123-8 [PubMed]

Sik A, Penttonen M, Ylinen A, Buzsaki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15:6651-65 [PubMed]

Sik A, Tamamaki N, Freund TF (1993) Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. Eur J Neurosci 5:1719-28 [PubMed]

Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A 100:2065-9 [Journal] [PubMed]

Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870-3 [PubMed]

Sorra KE, Harris KM (1993) Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J Neurosci 13:3736-48 [PubMed]

Traub RD, Bibbig A (2000) A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J Neurosci 20:2086-93 [PubMed]

Traub RD, Jefferys GR, Whittington MA (1999) Fast Oscillations In Cortical Circuits

Traub RD, Miles R (1991) Neuronal Networks Of The Hippocampus

Traub RD, Miles R, Buzsaki G (1992) Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J Physiol 451:653-72 [PubMed]

Traub RD, Miles R, Wong RK (1989) Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243:1319-25 [PubMed]

Traub RD, Schmitz D, Jefferys JG, Draguhn A (1999) High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 92:407-26 [PubMed]

Traub RD, Whittington MA, Buhl EH, Jefferys JG, Faulkner HJ (1999) On the mechanism of the gamma --> beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation. J Neurosci 19:1088-105 [PubMed]

Traub RD, Whittington MA, Colling SB, Buzsaki G, Jefferys JG (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493 ( Pt 2):471-84 [PubMed]

Traub RD, Whittington MA, Stanford IM, Jefferys JG (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:621-4 [PubMed]

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]

White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5-16 [Journal] [PubMed]

Whittington MA, Stanford IM, Colling SB, Jefferys JG, Traub RD (1997) Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. J Physiol 502 ( Pt 3):591-607 [PubMed]

Whittington MA, Traub RD, Faulkner HJ, Jefferys JG, Chettiar K (1998) Morphine disrupts long-range synchrony of gamma oscillations in hippocampal slices. Proc Natl Acad Sci U S A 95:5807-11 [PubMed]

Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612-5 [PubMed]

Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676-9 [PubMed]

Wu C, Asl MN, Gillis J, Skinner FK, Zhang L (2005) An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. J Neurophysiol 94:741-53 [Journal] [PubMed]

Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30-46 [PubMed]

Canakci S, Toy MF, Inci AF, Liu X, Kuzum D (2017) Computational analysis of network activity and spatial reach of sharp wave-ripples PLoS ONE 12(9):e0184542 [Journal] [PubMed]

   Computational analysis of NN activity and spatial reach of sharp wave-ripples (Canakci et al 2017) [Model]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK (2013) Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Front Comput Neurosci 7:144 [Journal] [PubMed]

   CA1 PV+ fast-firing hippocampal interneuron (Ferguson et al. 2013) [Model]

Fink CG, Gliske S, Catoni N, Stacey WC (2015) Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis eNeuro 2(3):ENEURO.0024-15.2015 [Journal] [PubMed]

   Normal ripples, abnormal ripples, and fast ripples in a hippocampal model (Fink et al. 2015) [Model]

Gunn BG, Cox CD, Chen Y, Frotscher M, Gall CM, Baram TZ, Lynch G (2017) The Endogenous Stress Hormone CRH Modulates Excitatory Transmission and Network Physiology in Hippocampus. Cereb Cortex :1-17 [Journal] [PubMed]

   CRH modulates excitatory transmission and network physiology in hippocampus (Gunn et al. 2017) [Model]

Malerba P, Krishnan GP, Fellous JM, Bazhenov M (2016) Hippocampal CA1 Ripples as Inhibitory Transients. PLoS Comput Biol 12:e1004880 [Journal] [PubMed]

   CA1 pyramidal cells, basket cells, ripples (Malerba et al 2016) [Model]

Stanley DA, Talathi SS, Parekh MB, Cordiner DJ, Zhou J, Mareci TH, Ditto WL, Carney PR (2013) Phase shift in the 24-hour rhythm of hippocampal EEG spiking activity in a rat model of temporal lobe epilepsy. J Neurophysiol 110:1070-86 [Journal] [PubMed]

   Hippocampal CA3 network and circadian regulation (Stanley et al. 2013) [Model]

Vladimirov N, Tu Y, Traub RD (2013) Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study Eur J Neurosci. 38(10):3435-47 [Journal] [PubMed]

   Synaptic gating at axonal branches, and sharp-wave ripples with replay (Vladimirov et al. 2013) [Model]

(98 refs)

Gunn BG, Cox CD, Chen Y, Frotscher M, Gall CM, Baram TZ, Lynch G (2017) The Endogenous Stress Hormone CRH Modulates Excitatory Transmission and Network Physiology in Hippocampus. Cereb Cortex :1-17[PubMed]

References and models cited by this paper

References and models that cite this paper

Aldenhoff JB, Gruol DL, Rivier J, Vale W, Siggins GR (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science 221:875-7 [PubMed]

Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571-91 [PubMed]

Atherton LA, Dupret D, Mellor JR (2015) Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci 38:560-70 [Journal] [PubMed]

Bajo M, Cruz MT, Siggins GR, Messing R, Roberto M (2008) Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala. Proc Natl Acad Sci U S A 105:8410-5 [Journal] [PubMed]

Blank T, Nijholt I, Eckart K, Spiess J (2002) Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J Neurosci 22:3788-94 [Journal] [PubMed]

Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242-52 [PubMed]

Buzsaki G (1989) Two-stage model of memory trace formation: a role for finoisyfi brain states. Neuroscience 31:551-70 [PubMed]

Buzsáki G (2015) Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25:1073-188 [Journal] [PubMed]

Çaliskan G, Schulz SB, Gruber D, Behr J, Heinemann U, Gerevich Z (2015) Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro. Eur J Neurosci 41:31-44 [Journal] [PubMed]

Chattarji S, Tomar A, Suvrathan A, Ghosh S, Rahman MM (2015) Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 18:1364-75 [Journal] [PubMed]

Chen C,Grigoriadis DE (2015) NBI 30775 (R121919), an orally active antagonist of the corticotropin-releasing factor (CRF) type 1 receptor for the treatment of anxiety and depression Drug Dev Res 65:216-226

Chen Y, Andres AL, Frotscher M, Baram TZ (2012) Tuning synaptic transmission in the hippocampus by stress: the CRH system. Front Cell Neurosci 6:13 [Journal] [PubMed]

Chen Y, Bender RA, Brunson KL, Pomper JK, Grigoriadis DE, Wurst W, Baram TZ (2004) Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proc Natl Acad Sci U S A 101:15782-7 [Journal] [PubMed]

Chen Y, Bender RA, Frotscher M, Baram TZ (2001) Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis. J Neurosci 21:7171-81 [PubMed]

Chen Y, Brunson KL, Adelmann G, Bender RA, Frotscher M, Baram TZ (2004) Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress. Neuroscience 126:533-40 [Journal] [PubMed]

Chen Y, Brunson KL, Müller MB, Cariaga W, Baram TZ (2000) Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 420:305-23 [PubMed]

Chen Y, Dubé CM, Rice CJ, Baram TZ (2008) Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 28:2903-11 [Journal] [PubMed]

Chen Y, Molet J, Gunn BG, Ressler K, Baram TZ (2015) Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons. Endocrinology 156:4769-80 [Journal] [PubMed]

Chen Y, Rex CS, Rice CJ, Dubé CM, Gall CM, Lynch G, Baram TZ (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S A 107:13123-8 [Journal] [PubMed]

Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215-29 [PubMed]

Hájos N, Karlócai MR, Németh B, Ulbert I, Monyer H, Szabó G, Erdélyi F, Freund TF, Gulyás AI (2013) Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro. J Neurosci 33:11677-91 [Journal] [PubMed]

Haug T, Storm JF (2000) Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. J Neurophysiol 83:2071-9 [PubMed]

Herman MA, Kallupi M, Luu G, Oleata CS, Heilig M, Koob GF, Ciccocioppo R, Roberto M (2013) Enhanced GABAergic transmission in the central nucleus of the amygdala of genetically selected Marchigian Sardinian rats: alcohol and CRF effects. Neuropharmacology 67:337-48 [Journal] [PubMed]

Hoare SR, Fleck BA, Gross RS, Crowe PD, Williams JP, Grigoriadis DE (2008) Allosteric ligands for the corticotropin releasing factor type 1 receptor modulate conformational states involved in receptor activation. Mol Pharmacol 73:1371-80 [Journal] [PubMed]

Hollrigel GS, Chen K, Baram TZ, Soltesz I (1998) The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience 84:71-9 [PubMed]

Hung HC, Chou CK, Chiu TH, Lee EH (1992) CRF increases protein phosphorylation and enhances retention performance in rats. Neuroreport 3:181-4 [PubMed]

Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 76:333-63 [Journal] [PubMed]

Keegan CE, Karolyi IJ, Knapp LT, Bourbonais FJ, Camper SA, Seasholtz AF (1994) Expression of corticotropin-releasing hormone transgenes in neurons of adult and developing mice. Mol Cell Neurosci 5:505-14 [Journal] [PubMed]

Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453-62 [PubMed]

Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53-7 [PubMed]

Koniaris E, Drimala P, Sotiriou E, Papatheodoropoulos C (2011) Different effects of zolpidem and diazepam on hippocampal sharp wave-ripple activity in vitro. Neuroscience 175:224-34 [Journal] [PubMed]

Kratzer S, Mattusch C, Metzger MW, Dedic N, Noll-Hussong M, Kafitz KW, Eder M, Deussing JM, Holsboer F, Kochs E, Rammes G (2013) Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels. Front Cell Neurosci 7:91 [Journal] [PubMed]

Kubota D, Colgin LL, Casale M, Brucher FA, Lynch G (2003) Endogenous waves in hippocampal slices. J Neurophysiol 89:81-9 [PubMed]

Lee EH, Huang AM, Tsuei KS, Lee WY (1996) Enhanced hippocampal corticotropin-releasing factor gene expression associated with memory consolidation and memory storage in rats. Chin J Physiol 39:197-203 [PubMed]

Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434-45 [Journal] [PubMed]

Ma YL, Chen KY, Wei CL, Lee EH (1999) Corticotropin-releasing factor enhances brain-derived neurotrophic factor gene expression to facilitate memory retention in rats. Chin J Physiol 42:73-81 [PubMed]

Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873-87 [PubMed]

Maras PM, Baram TZ (2012) Sculpting the hippocampus from within: stress, spines, and CRH. Trends Neurosci 35:315-24 [Journal] [PubMed]

McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci 8:367-81 [PubMed]

Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1:135-9 [Journal] [PubMed]

Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123-31 [PubMed]

Papatheodoropoulos C (2008) A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes. Neuroscience 157:495-501 [Journal] [PubMed]

Papatheodoropoulos C, Koniaris E (2011) a5GABAA receptors regulate hippocampal sharp wave-ripple activity in vitro. Neuropharmacology 60:662-73 [Journal] [PubMed]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Prescott SA, Sejnowski TJ, De Koninck Y (2006) Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Mol Pain 2:32 [PubMed]

Radulovic J, Rühmann A, Liepold T, Spiess J (1999) Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 19:5016-25 [PubMed]

Rainnie DG, Fernhout BJ, Shinnick-Gallagher P (1992) Differential actions of corticotropin releasing factor on basolateral and central amygdaloid neurones, in vitro. J Pharmacol Exp Ther 263:846-58 [PubMed]

Ratte S, Hong S, De Schutter E, Prescott SA (2013) Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron 78:758-72 [PubMed]

Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, Dedic N, Schumacher M, von Wolff G, Avrabos C, Touma C, Engblom D, Schütz G, Nave KA, Eder M, Wotjak CT, Sillaber I, Holsboer F, Wurst W, Deussing JM (2011) Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science 333:1903-7 [Journal] [PubMed]

Rex CS, Colgin LL, Jia Y, Casale M, Yanagihara TK, Debenedetti M, Gall CM, Kramar EA, Lynch G (2009) Origins of an intrinsic hippocampal EEG pattern. PLoS One 4:e7761 [Journal] [PubMed]

Ritchie AK, Kuryshev YA, Childs GV (1996) Corticotropin-releasing hormone and calcium signaling in corticotropes. Trends Endocrinol Metab 7:365-9 [PubMed]

Row BW, Dohanich GP (2008) Post-training administration of corticotropin-releasing hormone (CRH) enhances retention of a spatial memory through a noradrenergic mechanism in male rats. Neurobiol Learn Mem 89:370-8 [Journal] [PubMed]

Rudolph S, Tsai MC, von Gersdorff H, Wadiche JI (2015) The ubiquitous nature of multivesicular release. Trends Neurosci 38:428-38 [Journal] [PubMed]

Sakanaka M, Shibasaki T, Lederis K (1986) Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res 382:213-38 [PubMed]

Scanziani M, Capogna M, Gahwiler BH, Thompson SM (1992) Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9:919-27 [PubMed]

Schlingloff D, Káli S, Freund TF, Hájos N, Gulyás AI (2014) Mechanisms of sharp wave initiation and ripple generation. J Neurosci 34:11385-98 [Journal] [PubMed]

Schneggenburger R, Rosenmund C (2015) Molecular mechanisms governing Ca(2+) regulation of evoked and spontaneous release. Nat Neurosci 18:935-41 [Journal] [PubMed]

Smith BN, Dudek FE (1994) Age-related epileptogenic effects of corticotropin-releasing hormone in the isolated CA1 region of rat hippocampal slices. J Neurophysiol 72:2328-33 [PubMed]

Stimberg M, Goodman DF, Benichoux V, Brette R (2014) Equation-oriented specification of neural models for simulations. Front Neuroinform 8:6 [Journal] [PubMed]

Swanson LW, Wyss JM, Cowan WM (1978) An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181:681-715 [PubMed]

Takuma K, Matsuda T, Yoshikawa T, Kitanaka J, Gotoh M, Hayata K, Baba A (1994) Corticotropin-releasing factor stimulates Ca2+ influx in cultured rat astrocytes. Biochem Biophys Res Commun 199:1103-7 [Journal] [PubMed]

Taxidis J, Coombes S, Mason R, Owen MR (2012) Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus 22:995-1017 [PubMed]

   CRH modulates excitatory transmission and network physiology in hippocampus (Gunn et al. 2017) [Model]

Urban NN, Barrionuevo G (1998) Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci U S A 95:11450-5 [PubMed]

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]

Wu C, Asl MN, Gillis J, Skinner FK, Zhang L (2005) An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. J Neurophysiol 94:741-53 [Journal] [PubMed]

Wu HC, Chen KY, Lee WY, Lee EH (1997) Antisense oligonucleotides to corticotropin-releasing factor impair memory retention and increase exploration in rats. Neuroscience 78:147-53 [PubMed]

Yan XX, Toth Z, Schultz L, Ribak CE, Baram TZ (1998) Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8:231-43 [Journal] [PubMed]

(67 refs)