5-neuron-model of neocortex for producing realistic extracellular AP shapes (Van Dijck et al. 2012)

 Download zip file 
Help downloading and running models
Accession:226812
This is a 5-neuron model of neocortex, containing one tufted layer-5 pyramidal cell, two non-tufted pyramidal cells, and two inhibitory interneurons. It was used to reproduce extracellular spike shapes in a study comparing algorithms for spike sorting and electrode selection. The neuron models are adapted from Dyhrfjeld-Johnsen et al. (2005).
Reference:
1 . Van Dijck G, Seidl K, Paul O, Ruther P, Van Hulle MM, Maex R (2012) Enhancing the yield of high-density electrode arrays through automated electrode selection. Int J Neural Syst 22:1-19 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Extracellular; Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neocortex U1 L5B pyramidal pyramidal tract GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: GENESIS;
Model Concept(s):
Implementer(s): Maex, Reinoud [reinoud at bbf.uia.ac.be];
Search NeuronDB for information about:  Neocortex U1 L5B pyramidal pyramidal tract GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell;
// genesis


// Assumes /Excitatory_fibres has been created (by calling make_fibres from Fibres_make.g).

// A parameter TARGET gives the pathname of the target neuron to which all fibres from
// /Excitatory fibres are to be connected.

// The connections may be laid horizontally, using only the z-coordinate as a criterion,
// or radially, allowing the fibre to connect to all compartments at about the same
// position from the soma. Only the first implementation is active now.

// Remark: It would be cleaner to add the fibres along with all connection parameters as
// arguments of the function, but this is too complicated now.
 
int  index


function connect_horizontally_to_excitatory_fibres (target)

	str target
 
// Connecting fibres to L5P *****

	ce /Excitatory_fibres


// First connection scheme: each fiber runs horizontally and is allowed to make a synapse
// on each compartment in (approximately) the same horizontal plane


echo Connecting excitatory feedforward fibres 

	volumeconnect FF/fibre[] \
                    {target}[][TYPE=compartment]/AMPA \
                    -relative \
                    -sourcemask box -1 -1 -1 1 1 1 \
                    -destmask ellipsoid 0 0 0 1 1 2e-6 \ 
                    -probability 0.05 // 1.0 // {P_parallel_fiber_to_Golgi_cell_synapse}

/*
	volumeweight FF/fibre[] \
                   {target}[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse * 0.05} -uniform {weight_distribution}
*/

	volumeweight FF/fibre[] \
                   {target}[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse} -uniform {weight_distribution}

	volumedelay   FF/fibre[] \
                    {target}[][TYPE=compartment]/AMPA \
                    -radial {E_fibre_conduction_velocity} -uniform {delay_distribution}


echo Connecting excitatory intracolumnar feedback fibres 

	volumeconnect FBintra/fibre[] \
                    {target}[][TYPE=compartment]/AMPA \
                    -relative \
                    -sourcemask box -1 -1 -1 1 1 1 \
                    -destmask ellipsoid 0 0 0 1 1 2e-6 \ 
                    -probability 0.05 // 1.0 // {P_parallel_fiber_to_Golgi_cell_synapse}
/*
	volumeweight FBintra/fibre[] \
                   {target}[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse * 0.05} -uniform {weight_distribution}
*/


	volumeweight FBintra/fibre[] \
                   {target}[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse} -uniform {weight_distribution}

	volumedelay   FBintra/fibre[] \
                    {target}[][TYPE=compartment]/AMPA \
                    -fixed 0.02 // -radial {E_fibre_conduction_velocity} -uniform {delay_distribution}

end

/*
echo Connecting excitatory intercolumnar feedback fibres

      volumeconnect FBinter/fibre[] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -relative \
                    -sourcemask box -1 -1 -1 1 1 1 \
                    -destmask ellipsoid 0 0 0 1 1 2e-6 \ 
                    -probability 0.05 // 1.0 // {P_parallel_fiber_to_Golgi_cell_synapse}

      volumeweight FBinter/fibre[] \
                   /L5P/p#[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse} -uniform {weight_distribution}

      volumedelay   FBinter/fibre[] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -radial {E_fibre_conduction_velocity} -uniform {delay_distribution}
*/

/*

// Second connection scheme: each fiber is allowed to make a synapse on compartments
// located from the soma (the origin) at the same distance as the compartment to which the fibre
// has been associated (remember that a fibre for each compartment was created).
int i
float r, x1, y1, z1

      ce {FF}

      for (i = 0; i < {number_FF_fibres}; i = {i} + 1)
          x1 = {getfield fibre[{i}] x}
          y1 = {getfield fibre[{i}] y}
          z1 = {getfield fibre[{i}] z}
          r = {sqrt {x1*x1 + y1*y1 + z1*z1}}
//          echo {r}

          volumeconnect fibre[{i}] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -sourcemask box -1 -1 -1 1 1 1 \
                    -destmask ellipsoid 0 0 0 {r + 1e-6} {r + 1e-6} {r + 1e-6} \ 
                    -desthole ellipsoid 0 0 0 {r - 1e-6} {r - 1e-6} {r - 1e-6} \ 
                    -probability 0.1 // 0.05
      end

      volumeweight fibre[] \
                   /L5P/p#[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse} -uniform {weight_distribution}

      volumedelay   fibre[] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -radial {E_fibre_conduction_velocity} -uniform {delay_distribution}


      ce {FBintra}

      for (i = 0; i < {number_FBintra_fibres}; i = {i} + 1)
          x1 = {getfield fibre[{i}] x}
          y1 = {getfield fibre[{i}] y}
          z1 = {getfield fibre[{i}] z}
          r = {sqrt {x1*x1 + y1*y1 + z1*z1}}
//          echo {r}
  
          volumeconnect fibre[{i}] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -sourcemask box -1 -1 -1 1 1 1 \
                    -destmask ellipsoid 0 0 0 {r + 1e-6} {r + 1e-6} {r + 1e-6} \ 
                    -desthole ellipsoid 0 0 0 {r - 1e-6} {r - 1e-6} {r - 1e-6} \ 
                    -probability 0.1 // 0.05
      end

      volumeweight fibre[] \
                   /L5P/p#[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse} -uniform {weight_distribution}

      volumedelay   fibre[] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -radial {E_fibre_conduction_velocity} -uniform {delay_distribution}




      ce {FBinter}

      for (i = 0; i < {number_FBinter_fibres}; i = {i} + 1)
          x1 = {getfield fibre[{i}] x}
          y1 = {getfield fibre[{i}] y}
          z1 = {getfield fibre[{i}] z}
          r = {sqrt {x1*x1 + y1*y1 + z1*z1}}
//          echo {r}
  
          volumeconnect fibre[{i}] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -sourcemask box -1 -1 -1 1 1 1 \
                    -destmask ellipsoid 0 0 0 {r + 1e-6} {r + 1e-6} {r + 1e-6} \ 
                    -desthole ellipsoid 0 0 0 {r - 1e-6} {r - 1e-6} {r - 1e-6} \ 
                    -probability 0.1 // 0.05
      end

      volumeweight fibre[] \
                   /L5P/p#[][TYPE=compartment]/AMPA  -fixed \
                   {weight_AMPA_synapse} -uniform {weight_distribution}

      volumedelay   fibre[] \
                    /L5P/p#[][TYPE=compartment]/AMPA \
                    -radial {E_fibre_conduction_velocity} -uniform {delay_distribution}

*/



Loading data, please wait...