Theory and simulation of integrate-and-fire neurons driven by shot noise (Droste & Lindner 2017)

 Download zip file 
Help downloading and running models
This archive contains source code for the paper "Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise" by Droste and Lindner, 2017. Specifically, it contains a Python implementation of the analytical formulas derived in that paper (allowing to calculate firing rate, CV and stationary voltage distribution of general integrate-and-fire neurons driven by excitatory shot noise, as well as power spectrum and rate-response of leaky integrate-and-fire neurons with such input) and C++ code implementing a Monte-Carlo simulation to estimate these quantities. A sample Jupyter notebook to play around with the analytics is included, as are scripts to reproduce the figures from the paper.
1 . Droste F, Lindner B (2017) Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise J. Comp. Neurosci.
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Abstract integrate-and-fire leaky neuron; Abstract theta neuron;
Gap Junctions:
Simulation Environment: C or C++ program; Python;
Model Concept(s):
Implementer(s): Droste, Felix [fedro at];
import subprocess as sp

def build_argstr(p):
    argstr = ""
    for k in p.keys():
        if not k.startswith("_"):
                valstr = "{:~}".format(p[k]).replace(" ", "")
            except ValueError: # not a pint Quantity, apparently
                valstr = str(p[k])
            argstr += "--" + str(k) + "=" + valstr + " "
    return argstr

def xargs_submitter(exe_name, dir_names, param_sets, args={}):
    if args.has_key("nproc") and args["nproc"]:
        nprocstr = str(nproc)
    else: nprocstr = "`nproc`"

    if len(param_sets) > 0:
        p = sp.Popen("xargs -P%(nprocstr)s -I ^ bash -c 'P=('^');cd ${P[0]};%(exe_name)s ${P[@]:1} > %(stdout_name)s 2> %(stderr_name)s'" % {"exe_name": exe_name, "nprocstr": nprocstr, "stdout_name": "stdout",  "stderr_name": "stderr"}, stdin=sp.PIPE, shell=True)
    for dir_name, params in zip(dir_names, param_sets):
        print >> p.stdin, dir_name, build_argstr(params)

    print "PID:",
    if args.has_key("wait") and args["wait"]:
    if p.returncode > 0:
        out, err = p.communicate()
        print err
        print "Ret val", p.returncode

def condor_submitter(exe_name, dir_names, param_sets, args={}):
    submitstr = """
universe = vanilla
executable = /home/fedro/bin/shim_dmtcp_rike
kill_sig = 2
    prio = 0
    if args.has_key("prio"):
        prio = args["prio"]
    memstr = ""
    if args.has_key("mem"):
        memstr = "Request_memory = %i" % args["mem"]
    for dir_name, params in zip(dir_names, param_sets):
        submitstr += """
initialdir = %(dir_name)s
output = %(dir_name)s/condor_shimout
error = %(dir_name)s/condor_shimerr
log = %(dir_name)s/condor_log
priority = %(prio)i
dmtcp_args = --log %(dir_name)s/condor_shimlog --stdout %(dir_name)s/%(stdout_name)s --stderr %(dir_name)s/%(stderr_name)s
arguments = $(dmtcp_args) -- %(exe_name)s %(argstr)s
environment = $(dmtcp_env)
        """ % {"exe_name": exe_name, "dir_name": dir_name, "argstr": build_argstr(params), "prio": prio, 
                "memstr": memstr, "stdout_name": "stdout", "stderr_name": "stderr"}
    print submitstr
    if len(param_sets) > 0:
        cp = sp.Popen(["condor_submit"], stdin=sp.PIPE)
        cp.stdin.write(submitstr + "\n")

Loading data, please wait...