Mirror Neuron (Antunes et al 2017)

 Download zip file 
Help downloading and running models
Accession:229276
Modeling Mirror Neurons Through Spike-Timing Dependent Plasticity. This script reproduces Figure 3B.
Reference:
1 . Antunes G, Faria da Silva SF, Simoes de Souza FM (2018) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst 28:1750058 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I Calcium; I M; I h; I Potassium; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s): Cav1.2 CACNA1C; Cav1.3 CACNA1D;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; STDP;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  AMPA; NMDA; I M; I h; I Sodium; I Calcium; I Potassium; Glutamate;
/
Final
mechanisms
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA_EMS.mod *
ProbGABAAB_EMS.mod *
SK_E2.mod *
SKv3_1.mod *
STDP_triplet.mod
Ca_HVA.c
Ca_HVA.o
Ca_LVAst.c
Ca_LVAst.o
CaDynamics_E2.c
CaDynamics_E2.o
Ih.c
Ih.o
Im.c
Im.o
K_Pst.c
K_Pst.o
K_Tst.c
K_Tst.o
mod_func.c
mod_func.o
Nap_Et2.c
Nap_Et2.o
NaTa_t.c
NaTa_t.o
NaTs2_t.c
NaTs2_t.o
nrnmech.dll
ProbAMPANMDA_EMS.c
ProbAMPANMDA_EMS.o
ProbGABAAB_EMS.c
ProbGABAAB_EMS.o
SK_E2.c
SK_E2.o
SKv3_1.c
SKv3_1.o
STDP_triplet.c
STDP_triplet.o
                            
:Comment : LVA ca channel. Note: mtau is an approximation from the plots
:Reference : :		Avery and Johnston 1996, tau from Randall 1997
:Comment: shifted by -10 mv to correct for junction potential
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21

NEURON	{
	SUFFIX Ca_LVAst
	USEION ca READ eca WRITE ica
	RANGE gCa_LVAstbar, gCa_LVAst, ica
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gCa_LVAstbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	eca	(mV)
	ica	(mA/cm2)
	gCa_LVAst	(S/cm2)
	mInf
	mTau
	hInf
	hTau
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gCa_LVAst = gCa_LVAstbar*m*m*h
	ica = gCa_LVAst*(v-eca)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
		v = v + 10
		mInf = 1.0000/(1+ exp((v - -30.000)/-6))
		mTau = (5.0000 + 20.0000/(1+exp((v - -25.000)/5)))/qt
		hInf = 1.0000/(1+ exp((v - -80.000)/6.4))
		hTau = (20.0000 + 50.0000/(1+exp((v - -40.000)/7)))/qt
		v = v - 10
	UNITSON
}

Loading data, please wait...