Mirror Neuron (Antunes et al 2017)

 Download zip file 
Help downloading and running models
Accession:229276
Modeling Mirror Neurons Through Spike-Timing Dependent Plasticity. This script reproduces Figure 3B.
Reference:
1 . Antunes G, da Silva SFF, de Souza FMS (2017) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst :1750058 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I Calcium; I M; I h; I Potassium; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s): Cav1.2 CACNA1C; Cav1.3 CACNA1D;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; STDP;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  AMPA; NMDA; I M; I h; I Sodium; I Calcium; I Potassium; Glutamate;
/
Final
mechanisms
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA_EMS.mod *
ProbGABAAB_EMS.mod *
SK_E2.mod *
SKv3_1.mod *
STDP_triplet.mod
Ca_HVA.c
Ca_HVA.o
Ca_LVAst.c
Ca_LVAst.o
CaDynamics_E2.c
CaDynamics_E2.o
Ih.c
Ih.o
Im.c
Im.o
K_Pst.c
K_Pst.o
K_Tst.c
K_Tst.o
mod_func.c
mod_func.o
Nap_Et2.c
Nap_Et2.o
NaTa_t.c
NaTa_t.o
NaTs2_t.c
NaTs2_t.o
nrnmech.dll
ProbAMPANMDA_EMS.c
ProbAMPANMDA_EMS.o
ProbGABAAB_EMS.c
ProbGABAAB_EMS.o
SK_E2.c
SK_E2.o
SKv3_1.c
SKv3_1.o
STDP_triplet.c
STDP_triplet.o
                            
/* Created by Language version: 6.2.0 */
/* VECTORIZED */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
 
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define tau_r_GABAA _p[0]
#define tau_d_GABAA _p[1]
#define tau_r_GABAB _p[2]
#define tau_d_GABAB _p[3]
#define Use _p[4]
#define Dep _p[5]
#define Fac _p[6]
#define e_GABAA _p[7]
#define e_GABAB _p[8]
#define u0 _p[9]
#define synapseID _p[10]
#define verboseLevel _p[11]
#define GABAB_ratio _p[12]
#define i _p[13]
#define i_GABAA _p[14]
#define i_GABAB _p[15]
#define g_GABAA _p[16]
#define g_GABAB _p[17]
#define A_GABAA_step _p[18]
#define B_GABAA_step _p[19]
#define A_GABAB_step _p[20]
#define B_GABAB_step _p[21]
#define g _p[22]
#define Rstate _p[23]
#define tsyn_fac _p[24]
#define u _p[25]
#define A_GABAA _p[26]
#define B_GABAA _p[27]
#define A_GABAB _p[28]
#define B_GABAB _p[29]
#define factor_GABAA _p[30]
#define factor_GABAB _p[31]
#define DA_GABAA _p[32]
#define DB_GABAA _p[33]
#define DA_GABAB _p[34]
#define DB_GABAB _p[35]
#define v _p[36]
#define _g _p[37]
#define _tsav _p[38]
#define _nd_area  *_ppvar[0]._pval
#define rng	*_ppvar[2]._pval
#define _p_rng	_ppvar[2]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  2;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 /* declaration of user functions */
 static double _hoc_setRNG();
 static double _hoc_state();
 static double _hoc_toggleVerbose();
 static double _hoc_urand();
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 extern Prop* nrn_point_prop_;
 static int _pointtype;
 static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
 return create_point_process(_pointtype, _ho);
}
 static void _hoc_destroy_pnt();
 static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
 return loc_point_process(_pointtype, _vptr);
}
 static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
 return has_loc_point(_vptr);
}
 static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
 double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata(void* _vptr) { Prop* _prop;
 _prop = ((Point_process*)_vptr)->_prop;
   _setdata(_prop);
 }
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 0,0
};
 static Member_func _member_func[] = {
 "loc", _hoc_loc_pnt,
 "has_loc", _hoc_has_loc,
 "get_loc", _hoc_get_loc_pnt,
 "setRNG", _hoc_setRNG,
 "state", _hoc_state,
 "toggleVerbose", _hoc_toggleVerbose,
 "urand", _hoc_urand,
 0, 0
};
#define toggleVerbose toggleVerbose_ProbGABAAB_EMS
#define urand urand_ProbGABAAB_EMS
 extern double toggleVerbose( _threadargsproto_ );
 extern double urand( _threadargsproto_ );
 /* declare global and static user variables */
#define gmax gmax_ProbGABAAB_EMS
 double gmax = 0.001;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "gmax_ProbGABAAB_EMS", "uS",
 "tau_r_GABAA", "ms",
 "tau_d_GABAA", "ms",
 "tau_r_GABAB", "ms",
 "tau_d_GABAB", "ms",
 "Use", "1",
 "Dep", "ms",
 "Fac", "ms",
 "e_GABAA", "mV",
 "e_GABAB", "mV",
 "GABAB_ratio", "1",
 "i", "nA",
 "i_GABAA", "nA",
 "i_GABAB", "nA",
 "g_GABAA", "uS",
 "g_GABAB", "uS",
 "g", "uS",
 "Rstate", "1",
 "tsyn_fac", "ms",
 "u", "1",
 0,0
};
 static double A_GABAB0 = 0;
 static double A_GABAA0 = 0;
 static double B_GABAB0 = 0;
 static double B_GABAA0 = 0;
 static double delta_t = 0.01;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "gmax_ProbGABAAB_EMS", &gmax_ProbGABAAB_EMS,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 static void _hoc_destroy_pnt(_vptr) void* _vptr; {
   destroy_point_process(_vptr);
}
 
static int _ode_count(int);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "6.2.0",
"ProbGABAAB_EMS",
 "tau_r_GABAA",
 "tau_d_GABAA",
 "tau_r_GABAB",
 "tau_d_GABAB",
 "Use",
 "Dep",
 "Fac",
 "e_GABAA",
 "e_GABAB",
 "u0",
 "synapseID",
 "verboseLevel",
 "GABAB_ratio",
 0,
 "i",
 "i_GABAA",
 "i_GABAB",
 "g_GABAA",
 "g_GABAB",
 "A_GABAA_step",
 "B_GABAA_step",
 "A_GABAB_step",
 "B_GABAB_step",
 "g",
 "Rstate",
 "tsyn_fac",
 "u",
 0,
 "A_GABAA",
 "B_GABAA",
 "A_GABAB",
 "B_GABAB",
 0,
 "rng",
 0};
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
  if (nrn_point_prop_) {
	_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
	_p = nrn_point_prop_->param;
	_ppvar = nrn_point_prop_->dparam;
 }else{
 	_p = nrn_prop_data_alloc(_mechtype, 39, _prop);
 	/*initialize range parameters*/
 	tau_r_GABAA = 0.2;
 	tau_d_GABAA = 8;
 	tau_r_GABAB = 3.5;
 	tau_d_GABAB = 260.9;
 	Use = 1;
 	Dep = 100;
 	Fac = 10;
 	e_GABAA = -80;
 	e_GABAB = -97;
 	u0 = 0;
 	synapseID = 0;
 	verboseLevel = 0;
 	GABAB_ratio = 0;
  }
 	_prop->param = _p;
 	_prop->param_size = 39;
  if (!nrn_point_prop_) {
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
  }
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 
}
 static void _initlists();
 static void _net_receive(Point_process*, double*, double);
 static void _net_init(Point_process*, double*, double);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*f)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _ProbGABAAB_EMS_reg() {
	int _vectorized = 1;
  _initlists();
 	_pointtype = point_register_mech(_mechanism,
	 nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
	 hoc_nrnpointerindex, 1,
	 _hoc_create_pnt, _hoc_destroy_pnt, _member_func);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
  hoc_register_prop_size(_mechtype, 39, 3);
 	hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
 pnt_receive[_mechtype] = _net_receive;
 pnt_receive_init[_mechtype] = _net_init;
 pnt_receive_size[_mechtype] = 5;
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 ProbGABAAB_EMS C:/Users/Fabio/Desktop/NEURON_Book/Markram/hoc_combos_syn.1_0_10.allzips/Neurons/Fabio_L5_TTPC1_cADpyr232_5/mechanisms/ProbGABAAB_EMS.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
static int _reset;
static char *modelname = "GABAAB receptor with presynaptic short-term plasticity ";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int setRNG(_threadargsproto_);
static int state(_threadargsproto_);
 
/*VERBATIM*/
#include<stdlib.h>
#include<stdio.h>
#include<math.h>

double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);

 
static int  state ( _threadargsproto_ ) {
   A_GABAA = A_GABAA * A_GABAA_step ;
   B_GABAA = B_GABAA * B_GABAA_step ;
   A_GABAB = A_GABAB * A_GABAB_step ;
   B_GABAB = B_GABAB * B_GABAB_step ;
    return 0; }
 
static double _hoc_state(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 _r = 1.;
 state ( _p, _ppvar, _thread, _nt );
 return(_r);
}
 
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag; 
{  double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt;   _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
  if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
 _tsav = t; {
   double _lresult ;
 _args[1] = _args[0] ;
   _args[2] = _args[0] * GABAB_ratio ;
   if (  ! ( _args[0] > 0.0 ) ) {
     
/*VERBATIM*/
        return;
 }
   if ( Fac > 0.0 ) {
     u = u * exp ( - ( t - tsyn_fac ) / Fac ) ;
     }
   else {
     u = Use ;
     }
   if ( Fac > 0.0 ) {
     u = u + Use * ( 1.0 - u ) ;
     }
   tsyn_fac = t ;
   if ( Rstate  == 0.0 ) {
     _args[3] = exp ( - ( t - _args[4] ) / Dep ) ;
     _lresult = urand ( _threadargs_ ) ;
     if ( _lresult > _args[3] ) {
       Rstate = 1.0 ;
       if ( verboseLevel > 0.0 ) {
         printf ( "Recovered! %f at time %g: Psurv = %g, urand=%g\n" , synapseID , t , _args[3] , _lresult ) ;
         }
       }
     else {
       _args[4] = t ;
       if ( verboseLevel > 0.0 ) {
         printf ( "Failed to recover! %f at time %g: Psurv = %g, urand=%g\n" , synapseID , t , _args[3] , _lresult ) ;
         }
       }
     }
   if ( Rstate  == 1.0 ) {
     _lresult = urand ( _threadargs_ ) ;
     if ( _lresult < u ) {
       _args[4] = t ;
       Rstate = 0.0 ;
       A_GABAA = A_GABAA + _args[1] * factor_GABAA ;
       B_GABAA = B_GABAA + _args[1] * factor_GABAA ;
       A_GABAB = A_GABAB + _args[2] * factor_GABAB ;
       B_GABAB = B_GABAB + _args[2] * factor_GABAB ;
       if ( verboseLevel > 0.0 ) {
         printf ( "Release! %f at time %g: vals %g %g %g \n" , synapseID , t , A_GABAA , _args[1] , factor_GABAA ) ;
         }
       }
     else {
       if ( verboseLevel > 0.0 ) {
         printf ( "Failure! %f at time %g: urand = %g\n" , synapseID , t , _lresult ) ;
         }
       }
     }
   } }
 
static void _net_init(Point_process* _pnt, double* _args, double _lflag) {
       double* _p = _pnt->_prop->param;
    Datum* _ppvar = _pnt->_prop->dparam;
    Datum* _thread = (Datum*)0;
    _NrnThread* _nt = (_NrnThread*)_pnt->_vnt;
 _args[4] = t ;
   }
 
static int  setRNG ( _threadargsproto_ ) {
   
/*VERBATIM*/
    {
        /**
         * This function takes a NEURON Random object declared in hoc and makes it usable by this mod file.
         * Note that this method is taken from Brett paper as used by netstim.hoc and netstim.mod
         */
        void** pv = (void**)(&_p_rng);
        if( ifarg(1)) {
            *pv = nrn_random_arg(1);
        } else {
            *pv = (void*)0;
        }
    }
  return 0; }
 
static double _hoc_setRNG(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 _r = 1.;
 setRNG ( _p, _ppvar, _thread, _nt );
 return(_r);
}
 
double urand ( _threadargsproto_ ) {
   double _lurand;
 
/*VERBATIM*/
        double value;
        if (_p_rng) {
                /*
                :Supports separate independent but reproducible streams for
                : each instance. However, the corresponding hoc Random
                : distribution MUST be set to Random.uniform(1)
                */
                value = nrn_random_pick(_p_rng);
                //printf("random stream for this simulation = %lf\n",value);
                return value;
        }else{
 _lurand = scop_random ( 1.0 ) ;
   
/*VERBATIM*/
        }
 _lurand = value ;
   
return _lurand;
 }
 
static double _hoc_urand(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 _r =  urand ( _p, _ppvar, _thread, _nt );
 return(_r);
}
 
double toggleVerbose ( _threadargsproto_ ) {
   double _ltoggleVerbose;
 verboseLevel = 1.0 - verboseLevel ;
   
return _ltoggleVerbose;
 }
 
static double _hoc_toggleVerbose(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 _r =  toggleVerbose ( _p, _ppvar, _thread, _nt );
 return(_r);
}
 
static int _ode_count(int _type){ hoc_execerror("ProbGABAAB_EMS", "cannot be used with CVODE"); return 0;}

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  A_GABAB = A_GABAB0;
  A_GABAA = A_GABAA0;
  B_GABAB = B_GABAB0;
  B_GABAA = B_GABAA0;
 {
   double _ltp_GABAA , _ltp_GABAB ;
 Rstate = 1.0 ;
   tsyn_fac = 0.0 ;
   u = u0 ;
   A_GABAA = 0.0 ;
   B_GABAA = 0.0 ;
   A_GABAB = 0.0 ;
   B_GABAB = 0.0 ;
   _ltp_GABAA = ( tau_r_GABAA * tau_d_GABAA ) / ( tau_d_GABAA - tau_r_GABAA ) * log ( tau_d_GABAA / tau_r_GABAA ) ;
   _ltp_GABAB = ( tau_r_GABAB * tau_d_GABAB ) / ( tau_d_GABAB - tau_r_GABAB ) * log ( tau_d_GABAB / tau_r_GABAB ) ;
   factor_GABAA = - exp ( - _ltp_GABAA / tau_r_GABAA ) + exp ( - _ltp_GABAA / tau_d_GABAA ) ;
   factor_GABAA = 1.0 / factor_GABAA ;
   factor_GABAB = - exp ( - _ltp_GABAB / tau_r_GABAB ) + exp ( - _ltp_GABAB / tau_d_GABAB ) ;
   factor_GABAB = 1.0 / factor_GABAB ;
   A_GABAA_step = exp ( dt * ( ( - 1.0 ) / tau_r_GABAA ) ) ;
   B_GABAA_step = exp ( dt * ( ( - 1.0 ) / tau_d_GABAA ) ) ;
   A_GABAB_step = exp ( dt * ( ( - 1.0 ) / tau_r_GABAB ) ) ;
   B_GABAB_step = exp ( dt * ( ( - 1.0 ) / tau_d_GABAB ) ) ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _tsav = -1e20;
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
 initmodel(_p, _ppvar, _thread, _nt);
}}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   g_GABAA = gmax * ( B_GABAA - A_GABAA ) ;
   g_GABAB = gmax * ( B_GABAB - A_GABAB ) ;
   g = g_GABAA + g_GABAB ;
   i_GABAA = g_GABAA * ( v - e_GABAA ) ;
   i_GABAB = g_GABAB * ( v - e_GABAB ) ;
   i = i_GABAA + i_GABAB ;
   }
 _current += i;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
 	}
 _g = (_g - _rhs)/.001;
 _g *=  1.e2/(_nd_area);
 _rhs *= 1.e2/(_nd_area);
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
 double _break, _save;
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 _break = t + .5*dt; _save = t;
 v=_v;
{
 { {
 for (; t < _break; t += dt) {
  { state(_p, _ppvar, _thread, _nt); }
  
}}
 t = _save;
 }}}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

Loading data, please wait...