Mirror Neuron (Antunes et al 2017)

 Download zip file 
Help downloading and running models
Accession:229276
Modeling Mirror Neurons Through Spike-Timing Dependent Plasticity. This script reproduces Figure 3B.
Reference:
1 . Antunes G, da Silva SFF, de Souza FMS (2017) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst :1750058 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I Calcium; I M; I h; I Potassium; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s): Cav1.2 CACNA1C; Cav1.3 CACNA1D;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; STDP;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  AMPA; NMDA; I M; I h; I Sodium; I Calcium; I Potassium; Glutamate;
/
Final
mechanisms
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA_EMS.mod *
ProbGABAAB_EMS.mod *
SK_E2.mod *
SKv3_1.mod *
STDP_triplet.mod
Ca_HVA.c
Ca_HVA.o
Ca_LVAst.c
Ca_LVAst.o
CaDynamics_E2.c
CaDynamics_E2.o
Ih.c
Ih.o
Im.c
Im.o
K_Pst.c
K_Pst.o
K_Tst.c
K_Tst.o
mod_func.c
mod_func.o
Nap_Et2.c
Nap_Et2.o
NaTa_t.c
NaTa_t.o
NaTs2_t.c
NaTs2_t.o
nrnmech.dll
ProbAMPANMDA_EMS.c
ProbAMPANMDA_EMS.o
ProbGABAAB_EMS.c
ProbGABAAB_EMS.o
SK_E2.c
SK_E2.o
SKv3_1.c
SKv3_1.o
STDP_triplet.c
STDP_triplet.o
                            
:Comment :
:Reference : :		Reuveni, Friedman, Amitai, and Gutnick, J.Neurosci. 1993

NEURON	{
	SUFFIX Ca_HVA
	USEION ca READ eca WRITE ica
	RANGE gCa_HVAbar, gCa_HVA, ica 
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gCa_HVAbar = 0.00001 (S/cm2) 
}

ASSIGNED	{
	v	(mV)
	eca	(mV)
	ica	(mA/cm2)
	gCa	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{ 
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gCa = gCa_HVAbar*m*m*h
	ica = gCa*(v-eca)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
	UNITSOFF
        if((v == -27) ){        
            v = v+0.0001
        }
		mAlpha =  (0.055*(-27-v))/(exp((-27-v)/3.8) - 1)        
		mBeta  =  (0.94*exp((-75-v)/17))
		mInf = mAlpha/(mAlpha + mBeta)
		mTau = 1/(mAlpha + mBeta)
		hAlpha =  (0.000457*exp((-13-v)/50))
		hBeta  =  (0.0065/(exp((-v-15)/28)+1))
		hInf = hAlpha/(hAlpha + hBeta)
		hTau = 1/(hAlpha + hBeta)
	UNITSON
}

Loading data, please wait...