Mirror Neuron (Antunes et al 2017)

 Download zip file 
Help downloading and running models
Accession:229276
Modeling Mirror Neurons Through Spike-Timing Dependent Plasticity. This script reproduces Figure 3B.
Reference:
1 . Antunes G, da Silva SFF, de Souza FMS (2017) Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder. Int J Neural Syst :1750058 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I Calcium; I M; I h; I Potassium; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s): Cav1.2 CACNA1C; Cav1.3 CACNA1D;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; STDP;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  AMPA; NMDA; I M; I h; I Sodium; I Calcium; I Potassium; Glutamate;
/
Final
mechanisms
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA_EMS.mod *
ProbGABAAB_EMS.mod *
SK_E2.mod *
SKv3_1.mod *
STDP_triplet.mod
Ca_HVA.c
Ca_HVA.o
Ca_LVAst.c
Ca_LVAst.o
CaDynamics_E2.c
CaDynamics_E2.o
Ih.c
Ih.o
Im.c
Im.o
K_Pst.c
K_Pst.o
K_Tst.c
K_Tst.o
mod_func.c
mod_func.o
Nap_Et2.c
Nap_Et2.o
NaTa_t.c
NaTa_t.o
NaTs2_t.c
NaTs2_t.o
nrnmech.dll
ProbAMPANMDA_EMS.c
ProbAMPANMDA_EMS.o
ProbGABAAB_EMS.c
ProbGABAAB_EMS.o
SK_E2.c
SK_E2.o
SKv3_1.c
SKv3_1.o
STDP_triplet.c
STDP_triplet.o
                            
:Reference :Colbert and Pan 2002
:comment: took the NaTa and shifted both activation/inactivation by 6 mv

NEURON	{
	SUFFIX NaTs2_t
	USEION na READ ena WRITE ina
	RANGE gNaTs2_tbar, gNaTs2_t, ina
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gNaTs2_tbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ena	(mV)
	ina	(mA/cm2)
	gNaTs2_t	(S/cm2)
	mInf
	mTau
	mAlpha
	mBeta
	hInf
	hTau
	hAlpha
	hBeta
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gNaTs2_t = gNaTs2_tbar*m*m*m*h
	ina = gNaTs2_t*(v-ena)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
    if(v == -32){
    	v = v+0.0001
    }
		mAlpha = (0.182 * (v- -32))/(1-(exp(-(v- -32)/6)))
		mBeta  = (0.124 * (-v -32))/(1-(exp(-(-v -32)/6)))
		mInf = mAlpha/(mAlpha + mBeta)
		mTau = (1/(mAlpha + mBeta))/qt

    if(v == -60){
      v = v + 0.0001
    }
		hAlpha = (-0.015 * (v- -60))/(1-(exp((v- -60)/6)))
		hBeta  = (-0.015 * (-v -60))/(1-(exp((-v -60)/6)))
		hInf = hAlpha/(hAlpha + hBeta)
		hTau = (1/(hAlpha + hBeta))/qt
	UNITSON
}

Loading data, please wait...