Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)

 Download zip file 
Help downloading and running models
Accession:229279

References:
1 . Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology
2 . Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [PubMed]
3 . Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112-9 [PubMed]
4 . Steuber V, De Schutter E, Jaeger D (2004) Passive models of neurons in the deep cerebellar nuclei: the effect of reconstruction errors Neurocomputing 58-60:563-568
5 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I h; I T low threshold; I L high threshold; I Na,p; I Na,t; I K,Ca; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synaptic Integration;
Implementer(s): Jaeger, Dieter [djaeger at emory.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca; Gaba; Glutamate;
/
codes
pandora-matlab-1.4compat2
classes
@cip_trace_profile
.cvsignore *
cip_trace_profile.m
display.m *
get.m *
plot.m
set.m *
subsref.m *
                            
function h = plot(t)

% plot - Plots a cip_trace_profile object.
%
% Usage: 
% h = plot(t)
%
% Parameters:
%	t: A cip_trace_profile object.
%
% Returns:
%	h: Plot handle(s).
%
% Description:
% Plots contents of this object.
%
% $Id$
%
% Author: Cengiz Gunay <cgunay@emory.edu>, 2004/09/15

% Copyright (c) 2007 Cengiz Gunay <cengique@users.sf.net>.
% This work is licensed under the Academic Free License ("AFL")
% v. 3.0. To view a copy of this license, please look at the COPYING
% file distributed with this software or visit
% http://opensource.org/licenses/afl-3.0.php.

% Allow vectors of objects to be plotted at the same time
if length(t) > 1
  for i=1:length(t)
    plot(t(i));
  end
else
  ht = plotFigure(plot_superpose([plotData(t.trace), plotData(t.spikes)], {}, ...
				 get(t, 'id')));
  % TODO: Hack, fix it
  [hss1 hss2] = plotSpikeShape(get(t, 'spont_spike_shape'), 'Spont');
  [hss1 hss2] = plotSpikeShape(get(t, 'pulse_spike_shape'), 'Pulse');

  super_plot = set(superposePlots([plotResults(t.spont_spike_shape) ...
				   plotResults(t.pulse_spike_shape)]), ...
		   'legend', {});
  plotFigure(super_plot);
  h = [ht, hss1, hss2];
end

function [hss1, hss2] = plotSpikeShape(spsh, name)
  if ~ isempty(spsh.trace.data) 
    pr = plotResults(spsh);
    hss1 = plotFigure(set(pr, 'title', [ name ' ' get(pr, 'title')] ));
    pp = plotTPP(spsh);
    hss2 = plotFigure(set(pp, 'title', [ name ' ' get(pp, 'title')]));
  else
    hss1 = NaN;
    hss2 = NaN;
  end

Loading data, please wait...