Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)

 Download zip file 
Help downloading and running models
Accession:229279

References:
1 . Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology
2 . Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [PubMed]
3 . Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112-9 [PubMed]
4 . Steuber V, De Schutter E, Jaeger D (2004) Passive models of neurons in the deep cerebellar nuclei: the effect of reconstruction errors Neurocomputing 58-60:563-568
5 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I h; I T low threshold; I L high threshold; I Na,p; I Na,t; I K,Ca; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synaptic Integration;
Implementer(s): Jaeger, Dieter [djaeger at emory.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca; Gaba; Glutamate;
/
codes
pandora-matlab-1.4compat2
classes
@tests_db
private
.cvsignore *
abs.m
addColumns.m
addLastRow.m
addRow.m
allocateRows.m
anyRows.m
approxMappingLIBSVM.m
approxMappingNNet.m
approxMappingSVM.m
assignRowsTests.m
checkConsistentCols.m
compareRows.m
corrcoef.m
cov.m
crossProd.m
dbsize.m
delColumns.m
diff.m
display.m
displayRows.m
displayRowsCSV.m
displayRowsTeX.m
end.m
enumerateColumns.m
eq.m
factoran.m
fillMissingColumns.m
ge.m
get.m *
getColNames.m
groupBy.m
gt.m
histogram.m
invarValues.m
isinf.m
isnan.m
isnanrows.m
joinRows.m
kmeansCluster.m
le.m
lt.m
matchingRow.m
max.m
mean.m
meanDuplicateRows.m
min.m
minus.m
mtimes.m
ne.m
noNaNRows.m
onlyRowsTests.m
physiol_bundle.m
plot.m
plot_abstract.m
plot_bars.m
plotBox.m
plotCircular.m
plotCovar.m
plotImage.m
plotrow.m
plotrows.m
plotScatter.m
plotScatter3D.m
plotTestsHistsMatrix.m
plotUITable.m
plotUniquesStats2D.m
plotUniquesStatsBars.m
plotUniquesStatsStacked3D.m
plotXRows.m
plotYTests.m
plus.m
princomp.m
processDimNonNaNInf.m
rankMatching.m
rdivide.m
renameColumns.m
rop.m
rows2Struct.m
set.m *
setProp.m *
setRows.m
shufflerows.m
sortrows.m
sqrt.m
statsAll.m
statsBounds.m
statsMeanSE.m
statsMeanStd.m
std.m
subsasgn.m
subsref.m
sum.m
swapRowsPages.m
tests_db.m
tests2cols.m
tests2idx.m
tests2log.m
testsHists.m
times.m
transpose.m
uminus.m
unique.m
uop.m
vertcat.m
                            
function a_plot = plotBox(a_tests_db, title_str, props)

% plotBox - Creates a boxplot from each column in tests_db in separate axes.
%
% Usage:
% a_plot = plotBox(a_tests_db, title_str, props)
%
% Description:
%
%   Parameters:
%	a_tests_db: A tests_db object.
%	title_str: Optional title.
%	props: A structure with any optional properties.
%	  putLabels: Put special column name labels.
%	  notch: If 1, put notches on boxplots (default=1).
%	  whis: Whisker size passed to boxplotp (default=1.5);
%		
%   Returns:
%	a_plot: A plot_abstract object that can be plotted.
%
% See also: plot_abstract, plotFigure, boxplotp
%
% $Id$
%
% Author: Cengiz Gunay <cgunay@emory.edu>, 2008/01/16

% Copyright (c) 2007 Cengiz Gunay <cengique@users.sf.net>.
% This work is licensed under the Academic Free License ("AFL")
% v. 3.0. To view a copy of this license, please look at the COPYING
% file distributed with this software or visit
% http://opensource.org/licenses/afl-3.0.php.

if ~ exist('props', 'var')
  props = struct;
end

if ~ exist('title_str', 'var')
  title_str = '';
end

if isfield(props, 'notch')
   notch = props.notch;
else
   notch = 1;
end

if ~ exist('sym', 'var')
  sym = '';
end

if ~ exist('vert', 'var')
  vert = 1;
end

if isfield(props, 'whis')
  whis = props.whis;
else
  whis = 1.5;
end

% $$$ if dbsize(a_tests_db, 2) > 1 
% $$$   error('Plotting multiple columns at the same time not implemented!');
% $$$ end

% set names on x-axis
col_names = getColNames(a_tests_db);
num_cols = length(col_names);
props.axisProps = ...
    mergeStructsRecursive(getFieldDefault(props, 'axisProps', struct), ...
                          struct('XTick', 1:num_cols, ...
                                 'XTickLabel', {col_names}));
if num_cols == 1
  x_label = properTeXLabel(col_names{1});
else
  x_label = '';
end

if isfield(props, 'quiet')
  all_title = properTeXLabel(title_str);
else
  all_title = ...
      properTeXLabel(['Distributions from ' lower(get(a_tests_db, 'id')) title_str ]);
end

a_plot = ...
    plot_abstract({get(a_tests_db, 'data'), ...
                   notch, sym, vert, whis, struct('nooutliers', 1)}, ...
                  {'', x_label}, ...
                  all_title, {}, 'boxplotp', props); % mergeStructs(, struct)('tightLimits', 1)

Loading data, please wait...