Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)

 Download zip file 
Help downloading and running models
Accession:229279

References:
1 . Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology
2 . Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [PubMed]
3 . Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112-9 [PubMed]
4 . Steuber V, De Schutter E, Jaeger D (2004) Passive models of neurons in the deep cerebellar nuclei: the effect of reconstruction errors Neurocomputing 58-60:563-568
5 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I h; I T low threshold; I L high threshold; I Na,p; I Na,t; I K,Ca; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synaptic Integration;
Implementer(s): Jaeger, Dieter [djaeger at emory.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca; Gaba; Glutamate;
/
codes
pandora-matlab-1.4compat2
classes
@tests_db
private
.cvsignore *
abs.m
addColumns.m
addLastRow.m
addRow.m
allocateRows.m
anyRows.m
approxMappingLIBSVM.m
approxMappingNNet.m
approxMappingSVM.m
assignRowsTests.m
checkConsistentCols.m
compareRows.m
corrcoef.m
cov.m
crossProd.m
dbsize.m
delColumns.m
diff.m
display.m
displayRows.m
displayRowsCSV.m
displayRowsTeX.m
end.m
enumerateColumns.m
eq.m
factoran.m
fillMissingColumns.m
ge.m
get.m *
getColNames.m
groupBy.m
gt.m
histogram.m
invarValues.m
isinf.m
isnan.m
isnanrows.m
joinRows.m
kmeansCluster.m
le.m
lt.m
matchingRow.m
max.m
mean.m
meanDuplicateRows.m
min.m
minus.m
mtimes.m
ne.m
noNaNRows.m
onlyRowsTests.m
physiol_bundle.m
plot.m
plot_abstract.m
plot_bars.m
plotBox.m
plotCircular.m
plotCovar.m
plotImage.m
plotrow.m
plotrows.m
plotScatter.m
plotScatter3D.m
plotTestsHistsMatrix.m
plotUITable.m
plotUniquesStats2D.m
plotUniquesStatsBars.m
plotUniquesStatsStacked3D.m
plotXRows.m
plotYTests.m
plus.m
princomp.m
processDimNonNaNInf.m
rankMatching.m
rdivide.m
renameColumns.m
rop.m
rows2Struct.m
set.m *
setProp.m *
setRows.m
shufflerows.m
sortrows.m
sqrt.m
statsAll.m
statsBounds.m
statsMeanSE.m
statsMeanStd.m
std.m
subsasgn.m
subsref.m
sum.m
swapRowsPages.m
tests_db.m
tests2cols.m
tests2idx.m
tests2log.m
testsHists.m
times.m
transpose.m
uminus.m
unique.m
uop.m
vertcat.m
                            
function a_db = renameColumns(a_db, test_names, new_names)

% renameColumns - Rename one or more existing columns.
%
% Usage:
% a_db = renameColumns(a_db, test_names, new_names)
%
% Parameters:
%   a_db: A tests_db object.
%   test_names: A cell array of existing test names OR a regular
%   		expression denoted between slashes (e.g., '/(.*)/').
%   new_names: New names to replace existing ones OR regular expression
%   		replace string (no slashes, e.g, '$1_test'). See regexprep command.
%		
% Returns:
%   a_db: The tests_db object that includes the new columns.
%
% Example:
% % Renaming a single column:
% >> new_db = renameColumns(a_db, 'PulseIni100msSpikeRateISI_D40pA', 'Firing_rate');
% % Renaming using regular expressions: add suffix to all columns
% >> new_db = renameColumns(a_db, '/(.*)/', '$1_old');
% % Renaming multiple columns:
% >> new_db = renameColumns(a_db, {'a', 'b'}, {'c', 'd'});
%
% Description:

%   This is a cheap operation than modifies meta-data kept in object. For
% the regular expression renaming, the test_names and new_names
% parameters are passed to the regexprep command after removing the
% delimiting slashes (//). At least one grouping construct ('()') must be
% used in the search pattern such that it can be used in the replacement
% pattern (e.g., '$1'). See example above.
%
% See also: regexprep, allocateRows, tests_db
%
% $Id$
%
% Author: Cengiz Gunay <cgunay@emory.edu>, 2005/09/30

% Copyright (c) 2007 Cengiz Gunay <cengique@users.sf.net>.
% This work is licensed under the Academic Free License ("AFL")
% v. 3.0. To view a copy of this license, please look at the COPYING
% file distributed with this software or visit
% http://opensource.org/licenses/afl-3.0.php.

% For vector input, recurse in loop
num_tests = length(test_names);
if iscell(test_names) && num_tests > 1
  if num_tests ~= length(new_names)
    error('Existing and new names should have same number of items to rename columns.');
  end
  for col_num=1:num_tests
    a_db = renameColumns(a_db, test_names{col_num}, new_names{col_num});
  end
  return
elseif iscell(test_names)
  % only one name, then
  test_names = test_names{1}; new_names = new_names{1};
elseif ~ischar(test_names)
  error(['Inputs for test_names and new_names must be single strings or ' ...
         'multiple strings in a cell array.']);
end

% Regular expressions?
if test_names(1) == '/' && test_names(end) == '/'
  % remove the slashes
  test_names = test_names(2:(end-1));
  % apply to all column names
  all_names = getColNames(a_db);  
  all_new_names = regexprep(all_names, test_names, new_names);
  % recurse to use the new names as replacement (not changed columns
  % would be skipped
  a_db = renameColumns(a_db, all_names, all_new_names);
  return
end

% Single column mode
if strcmp(new_names, test_names)
  return;                               % nothing to do
end

col_idx = a_db.col_idx;
col_idx.(new_names) = col_idx.(test_names);
col_idx = rmfield(col_idx, test_names);

% Reorder struct
[cols perm] = sort(cell2mat(struct2cell(col_idx)));
a_db.col_idx = orderfields(col_idx, perm);

Loading data, please wait...