L5 PFC pyramidal neurons (Papoutsi et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:230811
" ... Here, we use a modeling approach to investigate whether and how the morphology of the basal tree mediates the functional output of neurons. We implemented 57 basal tree morphologies of layer 5 prefrontal pyramidal neurons of the rat and identified morphological types which were characterized by different response features, forming distinct functional types. These types were robust to a wide range of manipulations (distribution of active ionic mechanisms, NMDA conductance, somatic and apical tree morphology or the number of activated synapses) and supported different temporal coding schemes at both the single neuron and the microcircuit level. We predict that the basal tree morphological diversity among neurons of the same class mediates their segregation into distinct functional pathways. ..."
Reference:
1 . Papoutsi A, Kastellakis G, Poirazi P (2017) Basal tree complexity shapes functional pathways in the prefrontal cortex. J Neurophysiol 118:1970-1983 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I h; I L high threshold; I T low threshold; I N; I R; I K,Ca; I_AHP; I_Ks; I Na,p; I Na,t; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA; GabaB;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Papoutsi, Athanasia [athpapoutsi at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I h; I K,Ca; I_Ks; I R; I_AHP; Gaba; Glutamate;
/
PapoutsiEtAl2017
mod_files
ampa.mod
ampain.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
gabaa.mod *
gabaain.mod
gabab.mod *
h.mod
iks_in.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdr_in.mod
kdrD.mod *
naf.mod
naf_in.mod
nap.mod *
NMDA.mod
NMDA_syn.mod
vecstim.mod
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified by Brannon and Yiota Poirazi (poirazi@LNC.usc.edu) 
: to account for Hoffman et al 1997 distal region kinetics
: used only in locations > 100 microns from the soma
:
: modified to work with CVode by Carl Gold, 8/10/03
:  Updated by Maria Markaki  12/02/03

NEURON {
	SUFFIX kad
	USEION k READ ek WRITE ik
        RANGE gkabar,gka,ik
        GLOBAL ninf,linf,taul,taun,lmin
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}


PARAMETER {    :parameters that can be entered when function is called in cell-setup   

	gkabar = 0      (mho/cm2)  :initialized conductance
        vhalfn = -1     (mV)       :activation half-potential (-1), change for pfc, activation at -40
        vhalfl = -56    (mV)       :inactivation half-potential
       a0n = 0.1       (/ms)      :parameters used
       : a0l = 0.05       (/ms)      :parameters used
        zetan = -1.8    (1)        :in calculation of
        zetal = 3       (1) 
	:zetal = 3       (1)        :steady state values
        gmn   = 0.39    (1)        :and time constants
	:gmn   = 0.39    (1)        :and time constants, original
        gml   = 1       (1)
	lmin  = 2       (ms)
	nmin  = 0.1     (ms)
:	nmin  = 0.2     (ms)	:suggested
	pw    = -1      (1)
	tq    = -40     (mV)
	qq    = 5       (mV)
	q10   = 5                :temperature sensitivity
}


ASSIGNED {    :parameters needed to solve DE
	v               (mV)
        ek              (mV)
	celsius  	(degC)
	ik              (mA/cm2)
        ninf
        linf      
        taul            (ms)
        taun            (ms)
        gka             (mho/cm2)
}


STATE {       :the unknown parameters to be solved in the DEs 
	n l
}

: Solve qt once in initial block
LOCAL qt

INITIAL {    :initialize the following parameter using rates()
        qt = q10^((celsius-24)/10(degC))       : temperature adjustment factor
	rates(v)
	n=ninf
	l=linf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
:	ik = gkabar*n*l*(v+70)
	ik = gkabar*n*l*(v-ek)
}


DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)          : do this here
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}



PROCEDURE rates(v (mV)) {		 :callable from hoc
	LOCAL a

        a = alpn(v)
        ninf = 1/(1 + a)		 : activation variable steady state value
        taun = betn(v)/(qt*a0n*(1+a))	 : activation variable time constant
	if (taun<nmin) {taun=nmin}	 : time constant not allowed to be less than nmin

        a = alpl(v)
        linf = 1/(1+ a)                  : inactivation variable steady state value
	:taul = 6 (ms)
	taul = 0.26(ms/mV)*(v+50)               : inactivation variable time constant (0.26)
	if (taul<lmin) {taul=lmin}       : time constant not allowed to be less than lmin
}


FUNCTION alpn(v(mV)) { LOCAL zeta
  zeta = zetan+pw/(1+exp((v-tq)/qq))
UNITSOFF
  alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION betn(v(mV)) { LOCAL zeta
  zeta = zetan+pw/(1+exp((v-tq)/qq))
UNITSOFF
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION alpl(v(mV)) {
UNITSOFF
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION betl(v(mV)) {
UNITSOFF
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}


Loading data, please wait...